




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
汉寿三中艾镇南2008 10 24 1 一 复习回顾 1 在同一坐标系上作出下列直线 2x y 0 2x y 1 2x y 3 2x y 4 2x y 7 x y o 简单线性规划 1 可行域上的最优解 y 问题1 x有无最大 小 值 问题2 y有无最大 小 值 问题3 2x y有无最大 小 值 2 作出下列不等式组的所表示的平面区域 二 提出问题 把上面两个问题综合起来 设z 2x y 求满足 时 求z的最大值和最小值 y 直线l越往右平移 t随之增大 以经过点a 5 2 的直线所对应的t值最大 经过点b 1 1 的直线所对应的t值最小 可以通过比较可行域边界顶点的目标函数值大小得到 思考 还可以运用怎样的方法得到目标函数的最大 最小值 线性规划 问题 设z 2x y 式中变量满足下列条件 求z的最大值与最小值 目标函数 线性目标函数 线性约束条件 象这样关于x y一次不等式组的约束条件称为线性约束条件 z 2x y称为目标函数 因这里目标函数为关于x y的一次式 又称为线性目标函数 线性规划 线性规划 求线性目标函数在线性约束条件下的最大值或最小值的问题 统称为线性规划问题 可行解 满足线性约束条件的解 x y 叫可行解 可行域 由所有可行解组成的集合叫做可行域 最优解 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解 可行域 2x y 3 2x y 12 1 1 5 2 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的 x y 可行解 可行域 所有的 最优解 目标函数所表示的几何意义 在y轴上的截距或其相反数 线性规划 例1解下列线性规划问题 求z 2x y的最大值和最小值 使式中x y满足下列条件 解线性规划问题的一般步骤 第一步 在平面直角坐标系中作出可行域 第二步 在可行域内找到最优解所对应的点 第三步 解方程的最优解 从而求出目标函数的最大值或最小值 探索结论 2x y 0 2x y 3 2x y 3 答案 当x 1 y 1时 z 2x y有最小值 3 当x 2 y 1时 z 2x y有最大值3 也可以通过比较可行域边界顶点的目标函数值大小得到 线性规划 例2解下列线性规划问题 求z 300 x 900y的最大值和最小值 使式中x y满足下列条件 探索结论 x 3y 0 300 x 900y 0 300 x 900y 112500 答案 当x 0 y 0时 z 300 x 900y有最小值0 当x 0 y 125时 z 300 x 900y有最大值112500 例3 某工厂用a b两种配件生产甲 乙两种产品 每生产一件甲种产品使用4个a配件耗时1h 每生产一件乙种产品使用4个b配件耗时2h 该厂每天最多可从配件厂获得16个a配件和12个b配件 按每天工作8小时计算 该厂所有可能的日生产安排是什么 若生产1件甲种产品获利2万元 生产1件乙种产品获利3万元 采用哪种生产安排利润最大 把例3的有关数据列表表示如下 将上面不等式组表示成平面上的区域 区域内所有坐标为整数的点p x y 安排生产任务x y都是有意义的 解 设甲 乙两种产品分别生产x y件 由己知条件可得 问题 求利润2x 3y的最大值 线性约束条件 若设利润为z 则z 2x 3y 这样上述问题转化为 当x y在满足上述约束条件时 z的最大值为多少 当点p在可允许的取值范围变化时 m 4 2 问题 求利润z 2x 3y的最大值 变式 若生产一件甲产品获利1万元 生产一件乙产品获利3万元 采用哪种生产安排利润最大 n 2 3 变式 求利润z x 3y的最大值 解线性规划应用问题的一般步骤 2 设好变元并列出不等式组和目标函数 3 由二元一次不等式表示的平面区域作出可行域 4 在可行域内求目标函数的最优解 1 理清题意 列出表格 5 还原成实际问题 准确作图 准确计算 画出线性约束条件所表示的可行域 画图力保准确 法1 移 在线性目标函数所表示的一组平行线中 利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线 法2 算 线性目标函数的最大 小 值一般在可行域的顶点处取得 也可能在边界处取得 当两顶点的目标函数值相等时最优解落在一条边界线段上 此法可弥补作图不准的局限 例4 一个化肥厂生产甲 乙两种混合肥料 生产1车皮甲种肥料的主要原料是磷酸盐4t 硝酸盐18t 生产1车皮乙种肥料需要的主要原料是磷酸盐1t 硝酸盐15t 现库存磷酸盐10t 硝酸盐66t 在此基础上生产这两种混合肥料 列出满足生产条件的数学关系式 并画出相应的平面区域 并计算生产甲 乙两种肥料各多少车皮 能够产生最大的利润 分析 设x y分别为计划生产甲 乙两种混合肥料的车皮数 于是满足以下条件 x y o 解 设生产甲种肥料x车皮 乙种肥料y车皮 能够产生利润z万元 目标函数为z x 0 5y 约束条件为下例不等式组 可行域如图红色阴影部分 把z x 0 5y变形为y 2x 2z 它表示斜率为 2 在y轴上的截距为2z的一组直线系 x y o 由图可以看出 当直线经过可行域上的点m时 截距2z最大 即z最大 答 生产甲种 乙种肥料各2车皮 能够产生最大利润 最大利润为3万元 m 容易求得m点的坐标为 2 2 则zmax 3 线性约束条件 三 课堂练习 1 已知求z 2x y的最大值和最小值 5 5 1 o x y y x 0 x y 1 0 1 1 y 1 0 a 2 1 b 1 1 练习2 已知求z 3x 5y的最大值和最小值 5 5 1 o x y 1 1 5x 3y 15 x 5y 3 y x 1 a 2 1 b 3 2 5 2 练习3 某工厂生产甲 乙两种产品 生产1t甲种产品需要a种原料4t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 锻件清理工操作考核试卷及答案
- 耐火原料加工成型工数字化技能考核试卷及答案
- 酸洗钝化工标准化作业考核试卷及答案
- 应用电子技术试题及答案
- 银行智能化面试题目及答案
- 银行远程营销面试题目及答案
- 药学专业一试题及答案
- 考研哲学专业试题及答案
- 语文专业知识试题及答案
- 雕塑专业模拟试题及答案
- 2025辅导员考试大纲与试题及答案
- 测绘定密管理办法
- 第3节 跨学科实践:保护地球家园-教科版九年级《物理》上册教学课件
- 多租户隔离-第1篇-洞察及研究
- 2025年质量月全面质量管理知识竞赛题库及答案
- 小学可爱的中国课件
- 智慧高速公路解决方案
- 2025年司法考试刑法案例分析实战演练试卷(附司法解释案例解析)含答案
- 全员安全生产责任制考核制度和考核标准
- 商务英语就业前景调研报告
- Unit4SectionA2a2d课件-人教版九年级英语全一册
评论
0/150
提交评论