




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
离散型随机变量的分布列 二 一 复习引入 问题1 抛掷一个骰子 设得到的点数为x 则x的取值情况如何 x取各个值的概率分别是什么 2 1 3 4 5 6 问题2 连续抛掷两个骰子 得到的点数之和为x 则x取哪些值 各个对应的概率分别是什么 4 2 3 5 6 7 8 9 10 11 12 表中从概率的角度指出了随机变量在随机试验中取值的分布状况 称为随机变量的概率分布 如何给出定义呢 二 离散型随机变量的分布列 称为随机变量x的概率分布 简称x的分布列 设离散型随机变量x可能取的值为 1 概率分布 分布列 x取每一个 1 2 n 的概率p x x 则称表 简单记为 p x x i 1 2 n 离散型随机变量的分布列具有下述两个性质 例 某一射手射击所得环数的分布列如下 求此射手 射击一次命中环数 7 的概率 根据随机变量的意义与概率的性质 你能得出分布列有什么性质 某一射手射击所得环数 的分布列如下 求此射手 射击一次命中环数 7 的概率 解 根据射手射击所得环数x的分布列 有 p x 7 p x 8 p x 9 p x 10 0 090 280 290 22 所求得概率为p x 7 0 09 0 28 0 29 0 22 一般地 离散型随机变量在某一范围内的概率等于它取这个范围内各个值的概率之和 练习 随机变量x的分布列为 求常数a 解 由离散型随机变量的分布列的性质有 我们称这样的随机变量 服从二项分布 记作 其中n p为参数 并记 如果在一次试验中某事件发生的概率是p 那么在n次独立重复试验中这个事件恰好发生k次的概率是多少 在这个试验中 随机变量是什么 2 二项分布 其中k 0 1 n p 1 q 于是得到随机变量 的概率分布如下 例1 一个口袋里有5只球 编号为1 2 3 4 5 在袋中同时取出3只 以 表示取出的3个球中的最小号码 试写出 的分布列 解 随机变量 的可取值为1 2 3 当 1时 即取出的三只球中的最小号码为1 则其它两只球只能在编号为2 3 4 5的四只球中任取两只 故有p 1 3 5 同理可得p 2 3 10 p 3 1 10 因此 的分布列如下表所示 例2 1名学生每天骑自行车上学 从家到学校的途中有5个交通岗 假设他在交通岗遇到红灯的事件是独立的 并且概率都是1 3 1 求这名学生在途中遇到红灯的次数 的分布列 2 求这名学生在途中至少遇到一次红灯的概率 解 1 b 5 1 3 的分布列为p k k 0 1 2 3 4 5 2 所求的概率 p 1 1 p 0 1 32 243 211 243 例3 将一枚骰子掷2次 求下列随机变量的概率分布 1 两次掷出的最大点数 2 两次掷出的最小点数 3 第一次掷出的点数减去第二次掷出的点数之差 解 1 k包含两种情况 两次均为k点 或一个k点 另一个小于k点 故p k k 1 2 3 4 5 6 3 的取值范围是 5 4 4 5 5 即第一次是1点 第二次是6点 从而可得 的分布列是 2 k包含两种情况 两次均为k点 或一个k点 另一个大于k点 故p k k 1 2 3 4 5 6 例3 2000年高考题 某厂生产电子元件 其产品的次品率为5 现从一批产品中任意地连续取出2件 写出其中次品数 的概率分布 解 依题意 随机变量 b 2 5 所以 因此 次品数 的概率分布是 例4 在一袋中装有一只红球和九只白球 每次从袋中任取一球取后放回 直到取得红球为止 求取球次数 的分布列 分析 袋中虽然只有10个球 由于每次任取一球 取后又放回 因此应注意以下几点 1 一次取球两个结果 取红球a或取白球 且p a 0 1 2 取球次数 可能取1 2 3 由于取后放回 因此 各次取球相互独立 3 几何分布 在次独立重复试验中 某事件a第一次发生时所作的试验次数 也是一个取值为正整数的随机变量 k 表示在第k次独立重复试验时事件a第一次发生 如果把第k次实验时事件a发生记为ak p ak p 那么 于是得到随机变量 的概率分布如下 k 0 1 2 q 1 p 称 服从几何分布 并记g k p p qk 1 检验p1 p2 1 例 1 某人射击击中目标的概率是0 2 射击中每次射击的结果是相互独立的 求他在10次射击中击中目标的次数不超过5次的概率 精确到0 01 例 2 某人每次投篮投中的概率为0 1 各次投篮的结果互相独立 求他首次投篮投中时投篮次数的分布列 以及他在5次内投中的概率 精确到0 01 返回 从一批有10个合格品与3个次品的产品中 一件一件地抽取产品 设各个产品被抽到的可能性相同 在下列三种情况下 分别求出直到取出合格品为止时所需抽取的次数的分布列 解 表示只取一次就取到合格品 表示第一次取到次品 第二次取到合格品 表示第一 二次都取到次品 第三次取到合格品 随机变量 的分布列为 的所有取值为 1 2 3 4 每次取出的产品都不放回此批产品中 返回 某射手有5发子弹 射击一次命中的概率为0 9 如果命中了就停止射击 否则一直射击到子弹用完 求耗用子弹数的分布 如果命中2次就停止射击 否则一直射击到子弹用完 求耗用子弹数的分布列 解 的所有取值为 1 2 3 4 5 表示第一次就射中 它的概率为 表示第一次没射中 第二次射中 同理 表示前四次都没射中 返回 某射手有5发子弹 射击一次命中的概率为0 9 如果命中了就停止射击 否则一直射击到子弹用完 求耗用子弹数的分布列 如果命中2次就停止射击 否则一直射击到子弹用完 求耗用子弹数的分布列 解 的所有取值为 2 3 4 5 表示前二次都射中 它的概率为 表示前二次恰有一次射中 第三次射中 表示前四次中恰有一次射中 或前四次全部没射中 同理 小结 本节学习的主要内容及学习目标要求 1 理解离散型随机变量的分布列的意义 会求某些简单的离散型随机变量的分布列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚财产分割协议:共同财产评估与分配方案
- 生态环保型厂房车间租赁服务协议
- 采购谈判与跟单培训及效果监测合同
- 环保项目现场管理规则与格式条款合同详解
- 环保项目典当质押贷款服务合同示例
- 文化创意园场合作经营与创新合作协议
- 绿色环保型厂房商铺租赁服务协议
- 生态车库建设与运营管理合同样本
- 新能源汽车抵押贷款操作细则合同
- 车辆股份及商标权联合转让合同
- 血液透析低血压的护理
- 2022公务员录用体检操作手册(试行)
- 航行通告教学课件
- 2023年护理考试-外科护理(副高)历年考试真题试卷摘选答案
- 2022年广东高考成绩一分一段表重磅出炉
- 新版病人搬运(轮椅)操作评分标准
- 重症监护ICU护理实习生出科考试试题及答案
- GB/Z 22074-2008塑料外壳式断路器可靠性试验方法
- GB/T 32360-2015超滤膜测试方法
- 中药学全套(完整版)课件
- 工程施工停止点检查表
评论
0/150
提交评论