人教A版高中数学必修4第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式导学案(3).doc_第1页
人教A版高中数学必修4第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式导学案(3).doc_第2页
人教A版高中数学必修4第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式导学案(3).doc_第3页
人教A版高中数学必修4第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式导学案(3).doc_第4页
人教A版高中数学必修4第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式导学案(3).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.2 两角和与差的正弦、余弦、正切公式导学案【学习目标】1. 能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系。2.能应用公式解决比较简单的有关应用的问题。【重点难点】1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.【学法指导】1.理解并掌握两角和与差的正弦、余弦、正切公式,初步运用公式求一些角的三角函数值;2.经历两角和与差的三角公式的探究过程,提高发现问题、分析问题、解决问题的能力;【知识链接】1、在一般情况下sin(+)sin+sin,cos(+)cos+cos. 2、已知,那么( )A、 B、 C、 D、3.在运用公式解题时,既要注意公式的正用,也要注意公式的反用和变式运用.如公式tan()= 可变形为:tantan=tan()(1tantan);tantan=1-,4、又如:asin+bcos= (sincos+cossin)= sin(+),其中tan=等,有时能收到事半功倍之效. =_.提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容【学习过程】(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:动手完成两角和与差正弦和正切公式.观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到注意:以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?注意:(二)例题讲解例1、已知是第四象限角,求的值.例2、利用和(差)角公式计算下列各式的值:(1)、;(2)、;(3)、例3、化简 【学习反思】 【基础达标】(A)(B)(C)(D)(A)(B)(D)(A)(B)(C)(D)参考答案1、 2、C 3、A 4、 5、1 6、 【拓

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论