331函数的单调性与导数(1).ppt_第1页
331函数的单调性与导数(1).ppt_第2页
331函数的单调性与导数(1).ppt_第3页
331函数的单调性与导数(1).ppt_第4页
331函数的单调性与导数(1).ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 3 1函数的单调性 复习引入 1 一般地 对于给定区间D上的函数f x 若对于属于区间D的任意两个自变量的值x1 x2 当x1 x2时 有 问题1 函数单调性的定义怎样描述的 1 若f x1 f x2 那么f x 在这个区间上是增函数 2 若f x1 f x2 那么f x 在这个区间上是减函数 2 作差f x1 f x2 作商 2 用定义证明函数的单调性的一般步骤 1 任取x1 x2 D 且x1 x2 4 定号 判断差f x1 f x2 的正负 与 比较 3 变形 因式分解 配方 通分 提取公因式 5 结论 练习 讨论函数y x2 4x 3的单调性 定义法 单增区间 单减区间 图象法 思考 那么如何求出下列函数的单调性呢 1 f x 2x3 6x2 7 2 f x ex x 1 3 f x sinx x 发现问题 用单调性定义讨论函数单调性虽然可行 但十分麻烦 尤其是在不知道函数图象时 例如 2x3 6x2 7 是否有更为简捷的方法呢 下面我们通过函数的y x2 4x 3图象来考察单调性与导数有什么关系 2 再观察函数y x2 4x 3的图象 总结 该函数在区间 2 上单减 切线斜率小于0 即其导数为负 而当x 2时其切线斜率为0 即导数为0 函数在该点单调性发生改变 在区间 2 上单增 切线斜率大于0 即其导数为正 x y O x y O x y O x y O y x y x2 y x3 观察下面一些函数的图象 探讨函数的单调性与其导函数正负的关系 结论 在某个区间 a b 内 如果 那么函数在这个区间内单调递增 如果 那么函数在这个区间内单调递减 如果在某个区间内恒有f x 0 则f x 为常数函数 结论 一般地 设函数y f x 在某个区间内可导 则函数在该区间 注意 如果在某个区间内恒有f x 0 则f x 为常数函数 如果f x 0 则f x 为增函数 则f x 为减函数 如果f x 0 例1 求函数f x 2x3 6x2 7的单调区间 例题分析 f x 的单增区间为 0 和 2 f x 的单减区间 0 2 说明 当x 0或2时 f x 0 即函数在该点单调性发生改变 小结 根据导数确定函数的单调性步骤 1 确定函数f x 的定义域 2 求出函数的导数 3 解不等式f x 0 得函数单增区间 解不等式f x 0 得函数单减区间 例2 判定函数y ex x 1的单调区间 递增区间为 0 递减区间为 0 练习 判断下列函数的单调性 并求出单调区间 例题分析 1 f x 2 f x sinx x x 0 3 f x 2x3 3x2 24x 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论