




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
范文 范例 指导 参考 指数函数例题解析第一课时【例1】(基础题)求下列函数的定义域与值域:解 (1)定义域为x|xR且x2值域y|y0且y1(2)由2x+210,得定义域x|x2,值域为|y|y0(3)由33x-10,得定义域是x|x2,033x13,1.指数函数Y=ax (a0且a1)的定义域是R,值域是(0,+)2. 求定义域的几个原则:含根式(被开方数不为负)含分式,分母不为形如a0,(a 0)3. 求函数的值域:利用函数Y=ax单调性函数的有界性(x20;ax0)换元法.如:y=4x+62x-8(1x2) 先换元,再利用二次函数图象与性质(注意新元的范围)【例2】(基础题)指数函数yax,ybx,ycx,ydx的图像如图262所示,则a、b、c、d、1之间的大小关系是 Aab1cd Bab1dcC ba1dc Dcd1ab 解 选(c),在x轴上任取一点(x,0),则得ba1dc【例3】(基础题)比较大小:(3)4.54.1_3.73.6解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.14.53.6,作函数y14.5x,y23.7x的图像如图263,取x3.6,得4.53.63.73.6 4.54.13.73.6说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1)若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2)其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3)例题4(中档题)9 【例5】(中档题)作出下列函数的图像:图像变换法(3)y2|x-1| (4)y|13x|解 (2)y2x2的图像(如图265)是把函数y2x的图像向下平移2个单位得到的 解 (3)利用翻折变换,先作y2|x|的图像,再把y2|x|的图像向右平移1个单位,就得y2|x-1|的图像(如图266)解 (4)作函数y3x的图像关于x轴的对称图像得y3x的图像,再把y3x的图像向上平移1个单位,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到x轴上方而得到(如图267)例6(中档题) : 用函数单调性定义证明:当a1时,y = ax是增函数.【解析】设x1,x2R且x1x2,并令x2 = x1 + h (h0,hR),很独特的方式则有,a1,h0,即故y = ax (a1)为R上的增函数,同理可证0a1时,y = ax是R上的减函数.指数函数与二次函数的复合函数(由内到外分析)二次函数为内层函数,指数函数为外层函数例题7中档题)变式1 求函数y=()的单调区间,并证明之.解法一(在解答题):在R上任取x1、x2,且x1x2,则=()(x2x1)(x2+x12) 【()为底数,红色部分为指数】 , x1x2,x2x10.当x1、x2(,1时,x1+x220.这时(x2x1)(x2+x12)0,则1.y2y1,函数在(,1上单调递增.当x1、x21,+)时,x1+x220,这时(x2x1)(x2+x12)0,即1.(此处点评:上述证明过程中,在对商式正负判断时,利用了指数函数的值域及单调性) y2y1,函数在1,+上单调递减. 综上,函数y在(,1上单调递增,在1,+)上单调递减.合作探究:在填空、选择题中用上述方法就比较麻烦,因此我们可以考虑用复合函数的单调性来解题. 解法二、在填空、选择题中(用复合函数的单调性):设: 则:对任意的,有,又是减函数 在是减函数对任意的,有又是减函数 在是增函数在该问题中先确定内层函数()和外层函数()的单调情况,再根据内外层函数的单调性确定复合函数的单调性.变式2 已知且,讨论的单调性. 【分析】这是一道与指数函数有关的复合函数讨论单调性题,指数,当时是减函数,时是增函数,而的单调性又与和两种范围有关,应分类讨论.【解析】设,则当时,是减函数, 当时,是增函数,又当时,是增函数,当时,是减函数,所以当时,原函数在上是减函数,在上是增函数.当时,原函数在上是增函数,在上是减函数.【小结】一般情况下,两个函数都是增函数或都是减函数,则其复合函数是增函数;如果两个函数中一增一减,则其复合函数是减函数,但一定注意考虑复合函数的定义域. 第二课时例题8:(疑难题)指数函数与二次函数的复合函数 换元法 先换元,再利用二次函数图象与性质(注意新元u的范围)当x0时,函数y有最大值为1内层指数函数u=(1/2)x为减,当u在(0,1/2】时,此时外层二次f(u)为减函数,即x在【1,正无穷大),则复合函数为增(画草图分析法) 点评:(1)指数函数的有界性(值域):x20; ax0 (2)上述证明过程中,在两次求x的范围时,逆向利用了指数函数的值域及逆向利用了指数函数的单调性,是关键及疑难点。变式: 求(3)的值域.解 y且.故的值域为.【小结】求与指数函数有关的函数的值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.例题9 (中档题)分式型指数函数 (1)判断f(x)的奇偶性; (2)求f(x)的值域; (3)证明f(x)在区间(,)上是增函数解 (1)定义域是R函数f(x)为奇函数反函数法,用指数函数值域 即f(x)的值域为(1,1)(3)设任意取两个值x1、x2(,)且x1x2 f(x1)f(x2)变式1 设a是实数, 试证明对于任意a,为增函数;证明:设R,且 则 由于指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-广西-广西中式面点师二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东工程测量员四级(中级工)历年参考题库典型考点含答案解析
- 2020-2025年一级注册建筑师之建筑结构高分通关题型题库附解析答案
- 2025年驾驶证考试-网约车资格证-网约车资格证历年参考题库含答案解析
- 2025年职业技能鉴定-茶艺师-茶艺师五级(初级工)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-热工职业-热工程控保护职业技能鉴定(中级)历年参考题库含答案解析(5套)
- 热力发电厂热工课件
- 季度院感知识培训记录课件
- 存货出入库管理培训课件
- 婚车出租专业知识培训内容课件
- 金安桥水电站枢纽布置及主要技术问题
- 端子铆压标准规范
- csc服务分包考试
- 高级(三级)育婴师理论试题-附答案
- YY 0271.1-2016牙科学水基水门汀第1部分:粉/液酸碱水门汀
- GB/T 30146-2013公共安全业务连续性管理体系要求
- GB 1886.232-2016食品安全国家标准食品添加剂羧甲基纤维素钠
- 地理信息系统技术概述课件
- 美育PPT精选文档课件
- 医院介入手术病人护送交接流程
- 农机职业技能竞赛农机修理工理论题库
评论
0/150
提交评论