反比例函数图像与性质(二).doc_第1页
反比例函数图像与性质(二).doc_第2页
反比例函数图像与性质(二).doc_第3页
反比例函数图像与性质(二).doc_第4页
反比例函数图像与性质(二).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六章 反比例函数2.反比例函数的图象与性质(二)教学案 陵前中学 曹安知识与技能目标: 能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的主要性质 提高学生观察、分析能力和对图象的感知水平,领会研究函数的一般要求过程和方法目标: 让学生经历知识的探究过程,通过全面的观察和比较,积累数学方法和活动经验 逐步提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想情感、态度和价值观目标:经历小组合作与交流活动,在质疑、追问、讨论中达成共识,发展合作能力和语言表达能力. 在教学目标的基础上制定如下的教学重点、教学难点: 重点:探索反比例函数的主要性质. 难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题三、教学过程: 第一环节:要点回顾 铺平道路1. 下列函数中,哪些是反比例函数?(1) (2) (3) (4) (5)2. 你能想到的图象吗?它是什么形状?有什么特点?呢?第二环节:设问质疑 探究尝试 内容1:试一试 观察反比例函数,的图象,你能发现它们的共同特征吗? (1)函数图象分别位于哪几个象限内?(2)当x取什么值时,图象在第一象限?当x取什么值时,图象在第三象限? (3)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗? 内容2:议一议 考察当=-2,-4,-6时,反比例函数的图象,它们有哪些共同特征?通过对时反比例函数图像特征的探究,培养学生利用数形结合探究问题的意识,发展学生类比分析问题的能力,使学生在知识上更加完善,在能力上逐步提高内容3:说一说 你能尝试着说说反比例函数的图象有哪些共同特征吗?第三环节:实际运用 巩固新知内容:练一练 1.下列函数:;中 (1)图象位于二、四象限的有 ; (2)在每一象限内,随的增大而增大的有 ; (3)在每一象限内,随的增大而减小的有 2. 若函数的图象在其象限内,随的增大而增大,则的取值范围是 3.点,都在反比例函数的图象上,若,则的大小关系是 变式训练:已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数 的图象上,比较y1、 y2 、y3的大小关系。 第四环节:激趣质疑 再探新知内容1:想一想在一个反比例函数图象任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为,与有什么关系?为什么? (1)让我们从具体的反比例函数开始考虑:此时,与有什么关系?为什么? (2)对于一般的反比例函数呢?结论:面积总等于。教师在整个过程中要给以适时的点拨和及时的总结内容2:变一变 在一个反比例函数图象任取两点P、Q,过点P作x轴的垂线,连接PO(O为原点),与坐标轴围成的三角形面积为;过点Q作x轴的垂线,连接QO,与坐标轴围成的三角形面积为,与有什么关系?为什么? 将问题直接抛给学生,类比前面探究问题的方法,让学生来寻求解决问题的策略 通过变式探究,开阔学生的思路,促进学生思维的发展,形成有效的知识建构第五环节:活学活用 巩固提高 1如图,是反比例函数的图象在第一象限分支上的一个动点, 随着自变量的增大,矩形的面积( )A不变 B.增大 C.减小 D.无法确定 2如图,是反比例函数的图象在第一象限分支上的一个动点,过点P作连接PO,则PAO的面积为 第六环节:分层达标 课后延伸A层:1.下列函数中,图象位于第一、三象限的有 ;在图象所在象限内,的值随的增大而增大的有 (1) ;(2);(3);(4)2.已知点A(-1,)、B(-2,)在双曲线上,则 (填“、或=”)B层:已知点,都在反比例函数的图象上,比较、与的大小C层:已知点,都在反比例函数的图象上,比较、的大小第七环节

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论