3 Decoupling.ppt_第1页
3 Decoupling.ppt_第2页
3 Decoupling.ppt_第3页
3 Decoupling.ppt_第4页
3 Decoupling.ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Thetransferfunctionmatrixofthesystemis 1 Definitionofdecouplingsystems 4 32 whereA BandCaren n n pandp nmatrices respectively Sincep q thisisasquarematrixdecouplingproblem 1 Problemformulation Consideradynamicsystemgivenby 4 2DecouplingbyStateFeedback 2 Definition System 4 32 issaidtobedecoupledifthetransferfunctionmatrixG s p qisnonsingularanddiagonal 3 Example Considerthefollowingsystem Itisclearthatthesystemisdecoupled Nowthecontrolproblembecomesasinglevariableproblem whosecontrollawiseasytodesign Fromy G s u wehave 4 Thedecouplingofmultivariablesystemsisoneofthemostimportantproblemsinmultivariablesystemscontrol Considerthefollowingsystem Becauseofthecoupling itisdifficulttodesignstablecontrollawsformultivariablesystemswithanicedynamicperformance 5 2 Decouplingbystatefeedbackp q i e thesystemissquare Thestatefeedbackcontrollawisu Kx Hv Hisnonsingular 4 34 where isthestatefeedbackmatrix isthenonsingularinput transformationmatrix 6 Hence theclosed looptransferfunctionmatrixwiththestatefeedbackcontrollaw is u Kx Hv Hisnonsingular 4 34 7 Problemstatement FindmatricesKandH suchthat isnonsingularanddiagonal i e 8 1 Relationshipbetweentheopen looptransferfunctionmatrixandtheclosed looptransferfunctionmatrix 2 Preliminarylemmas whereGf s andG s aretheclosed loopandopen looptransferfunctionmatrices respectively Lemma1 Therelationshipbetweentheopen looptransferfunctionmatrixandtheclosed looptransferfunctionmatrixisasfollows 9 2 NonnegativeintegersdiandnonzerovectorsEioftheopen looptransferfunctionmatrixG s Example Arealizationofg s 1 s3 3s2 2s 1 is Expressg s as Itcanbeverifiedthatthefirsttwoelementsoftheaboveprogressionarezerosandthethirdelementisnonzero 10 Inthegeneralcase lettheithrowofCbedenotedasciandtheithrowofG s bedenotedasGi s Then Gi s canbeexpressedas 11 thenwegetanonzerovectorsEiandanonnegativedi 0diistheleastintegersuchthat If but 12 Fromthedefinitionofand wehave 4 39 TheaboveanalysisindicatesthatitispossibletocomputediandEifromtwodifferentexpressionsG s and A B C 13 Example1 ComputediandEiforthefollowingG s d1 min 1 2 1 0 d2 min 2 2 1 1 Hence fromthedefinition wehave 14 15 c1B 10 d1 0 E1 10 c2B 01 d2 0 E2 01 Example4 5a Considerthefollowingsystem p33 ComputediandEi 16 Theithrowoftheopen looptransferfunctionmatrixcanbeexpressedas 3 Decouplingoftheclosed looptransferfunctionmatrix 1 Decouplingexpressionoftheopen looptransferfunctionmatrix 17 18 Theopen looptransferfunctionmatrixcanbeexpressedas p21 19 2 Decouplingofclosed looptransferfunctionmatrixFrom 20 Theclosed looptransferfunctionmatrixcanbeexpressedas S 2 p19 21 FromthedefinitionofdiandEi wecangetandoftheclosed loopsystems Notethat 4 Thenonnegativeintegersandnonzerovectorsofclosed loopsystems 22 Hence thereexistandsuchthat Lemma2 Proof Weonlyneedtoprove and 23 Wefirstprovethat 1 When 2 and Q E D 24 where Specially if 25 Theorem4 9 Thesystem canbedecoupledbythestatefeedbacku Kx Hvifandonlyifthematrix 4 32 isnonsingular 3 SufficientandNecessaryConditionforDecoupling 26 Proof Necessity WeonlyneedtoprovethatEisnonsingular Supposethesystemcanbedecoupledbythestatefeedbacku Kx Hv ThenGf s isdiagonalandnonsingular wherearetransferfunctions 27 Eisnonsingular Since Hence thereexistnonnegativeintegersandsuchthat isnonsingular 28 Sufficiency SubstitutingK E 1F H E 1 into S 2 yields K E 1F H E 1 29 4 49 where Q E D 30 Example4 5 TransformthesystemofExample4 5aintoanintegratordecoupledsystemandverifythatifthedecouplingcontradictsthestability c1B 10 d1 0 E1 10 c2B 01 d2 0 E2 01 Fromtheforgoingcomputation diandEiareasfollows p16 FromTheorem4 9 K E 1F H E 1 where 31 Hence 根据例题4 5a的计算可知E是单位阵 故系统可解耦 现采用定理4 9充分性证明中提供的 4 47 式将其化为积分器解耦系统 计算F阵 F1 c1A 001 F2 c2A 1 2 3 故得 32 Thefeedbackcontrollawis Thedynamicequationofclosed loopsystemis Thetransferfunctionmatrixoftheclosed looptransferfunctionmatrixis Theopen loopsystemiscontrollableandobservable buttheclosed loopsystemisunobservable which 33 whichmeansthataninstablemodehasbeencancelledandthedecouplingcontradictsthestability meansthatthestatefeedbackusedfordecouplinginthissystemchangestheobservability Computingtheeigenvaluesoftheclosed loopsystem wehave 34 Theorem4 10 Supposethatthesystemcanbedecoupledbystatefeedback and Then byusingthestatefeedback 4 Adecouplingcontrollaw 35 theclosed looptransferfunctionmatrixcanbetransformedinto wherekijareadjustableparameterswhichcanbeusedtoassignthepolesofthediagonalelements 36 Proof Consider SubstitutingH E 1andK E 1Dintotheaboveequationgives Hence weonlyneedtoprovethat 37 where 38 Theproofisdecomposedintothefollowingsteps 1 Prove A 1 2 Prove A 2 3 39 5 Itfollowsfrom A 1 A 4 that Q E D 4 Generally wehave 40 Theproblemiswhethertheclosed looptransformfunctionmatrixcanbetransformedinto Example Considerthefollowingdynamicequation byusingthestatefeedbacku Kx Hv Ifyes findKandH 41 c1B 0 1 d1 0 c2B 00 c2AB 21 d2 1 d1 d2 p 0 1 2 3 n Hence thematricesinthestatefeedbackcanbechosenas 42 modesunobservable Ifthedecouplingresultsincancelledpolesthatdonotlieinthelefthandsideplane wesaythedecouplingcontradictsthestability Ifthenthereexist 2 Othermethodsarerequiredif 5 Conclusionofdecouplingproblem p q 3 Ifasystemcanbedecoupledbyu Kx Hvand 1 Thesystemcanbedecoupledbyu Kx Hvif thenwecandecoupleitbyusing Theorem4 10 andthepolesofitsdiagonalelementscanbearbitrarilyassigned 43 Whethertheclosed loopsystemcanbeintegratordecoupledbystatefeedback Ifyes pleasegivethetransferfunctionmatrixafterdecoupling Whetherthedecouplingcontradictsthestability Example Considerthefollowingdynamicequation 44 c1B 11 d1 0 c2B 11 d2 0 Hence thesyste

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论