



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九 年 级 数 学4.6一元二次方程根与系数的关系教案 教学目标:1、知识目标:巩固一元二次方程的解法、根的判别式等知识,掌握一元二次方程的根与系数的关系并会初步应用,会运用根与系的关系解决相关数学问题和实际问题。2、能力目标:培养学生分析、观察、归纳的能力和推理论证的能力。3、情感目标:渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养学生去发现规律的积极性及勇于探索的精神和全面辩证地认识事物的能力。教学重点:根与系数的关系的推导、运用。教学难点:正确归纳、理解、运用根与系数的关系,培养学生探索和发现意识。教学方法:发现法,引导法,讲练结合法。教学过程:一、复习 1、一元二次方程的一般式? (板书) , 2、一元二次方程有实数根的条件是什么?( 3、由的符号 ,即0,=0,0 判定一元二次方程的根的情况如何? 反过来,若方程有两个不相等的实数根,说明怎么样等? 4、一元二次方程的求根公式二、问题情境,导入新课:解下列方程,并填写表格:方 程+观察上面的表格,你能得到什么结论?(1)关于x的方程的两根,与系数p,q之间有什么关系?(2)关于x的方程的两根,与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?二、探究新知:1、根与系数关系:(1)关于x的方程的两根,与系数p,q的关系是:, 。引导学生用文字语言来描述一下这两个关系式。并思考:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢?(2)形如的方程,如果,两根为,引导学生利用上面的结论猜想,与各项系数a、b、c之间有何关系。然后教师归纳,可以先将方程转化为二次项系数为1的一元二次方程,再利用上面的结论来研究,即:对于方程 ,对于这个结论我们又应该如何证明呢?引导学生利用求根公式给出证明。证明:,当时根为:设,则学生思考、归纳并回答下列问题:(1)你认为什么是根与系数的关系?根与系数的关系有什么作用?(2)运用根与系数的关系要注意些什么?(根与系数关系使用的前提是:a.是一元二次方程,即。b.方程为一般形式。即形如:。c.判别式大于等于零,即。)三、应用举例例1、不解方程,口答下列方程的两根和与两根积:(1) (2) (3)(4) (5) (6)例2、已知方程的一个根是3,求另一根及k的值。先让学生求解,再让学生代表介绍解法。教师展示: 从上面的两种解法中引导学生谈谈有什么启示?例3、已知的两个实数根,求的值。分析:因为是原方程的两个实数根,故都满足原方程,将代入原方程可得,而,利用根与系数的关系可知,从而可求的值。例4、 若一元二次方程-4 x+2=0的两根是、,求下列各式的值:(1)+ (2)+(提示:整体代入)四、巩固练习:1、已知方程的两根互为相反数,求k的值。2、已知关于x的方程的一个根是另一个根的2倍,求m的值。3、备选题:关于x的方程两实数根的平方和等于11,求k的值。五、归纳小结:今天我们学习了一元二次方程根与系数的关系,刚才通过填空题我们小结了一下,知道这两个关系我们可以用来求两根和、两根积,而且可以验算所求的根是否正确,更重要的是利用韦达定理可以简捷地解决许多有关一元二次方程的问题。六、达标检测:1、若方程的两个根为,则,的值是。2、已知是方程的两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省苏州2024-2025学年九年级(上)物理第一次月考试卷(含答案)
- 抗菌药物的分级管理
- 抗生素使用常见问题课件
- 2025-2026统编版八年级上册第二单元测试题(含答案)
- 最难的育儿题目及答案
- 江西小学教资题库及答案
- 高中几何经典题目及答案
- 扑火安全教育培训报道课件
- 2025年海底捞文员考试题及答案
- 河南二建考试试题及答案
- 中康科技腾讯健康:2024年消费者健康洞察呼吸系列报告-鼻炎鼻窦炎篇预览版
- 2025年IT技术支持工程师招聘面试问题及答案解析
- 挤压模具工特殊工艺考核试卷及答案
- 2025-2026学年外研版八年级英语上册教学计划及进度表
- (2025年标准)灵活用工协议书
- 台球厅合伙协议合同范本
- 开学第一课+课件-2025-2026学年人教版(2024)七年级英语上册
- 2025上海市中学生行为规范
- 浙教版信息科技四年级上册全册教学设计
- GB/T 4956-2003磁性基体上非磁性覆盖层覆盖层厚度测量磁性法
- 4三级心理危机干预体系流程图
评论
0/150
提交评论