




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市2019-2020学年高二数学上学期期中联考试题(含解析)一、选择题(本大题共10小题)1. 椭圆的一个焦点坐标为a. b. c. d. 2. 数列为等差数列,为其前n项和,若,则a. 120b. 60c. 80d. 2403. 在各项均为正数的等比数列中,则a. 有最小值3b. 有最小值4c. 有最大值3d. 有最大值44. 从椭圆的长轴的一个端点看短轴的两个端点的视角为,那么此椭圆的离心率a. b. c. d. 5. 已知命题p:存在,若命题p是假命题,则实数a的取值范围是a. b. c. d. 6. 是等比数列,若“n,p,”是“”成立的充分必要条件,则数列可以是递增数列;递减数列;常值数列;摆动数列a. b. c. d. 7. 设函数,若关于x的不等式在区间上恒成立,则实数m的取值范围是a. b. c. d. 8. 椭圆的左右焦点为,p为椭圆上第一象限内任意一点,关于p的对称点为m,关于的对称点为n,则的周长为a. 8b. 10c. 16d. 229. 已知数列的通项公式,其前n项和为,若,则的最大值是a. 1b. 3c. 5d. 710. 设,是椭圆的两个焦点,若c上存在点p满足,则m的取值范围是a. b. c. d. 二、填空题(本大题共4小题)11. 已知,则函数的最大值为_12. 已知等比数列中,若,则_13. 下列命题中正确的序号是_“”是“”的充要条件;若,则,是的充分必要条件;命题“对任意,有”的否定是“存在,有”;若p:,q:,则p是q成立的必要不充分条件14. ,分别是椭圆的左、右焦点,点p在椭圆c上,过作的角平分线的垂线,垂足为m,则的长为_三、解答题(本大题共4小题)15. 设m是实数,已知命题p:,使函数满足;已知命题q:方程表示焦点在x轴上的椭圆若命题p为真命题,求m的取值范围;若命题p,q均为假命题,求实数m的取值范围16. 已知函数若,求不等式的解集;若,且,求的最小值17. 已知椭圆的长轴两端点为,离心率为,分别是椭圆c的左,右焦点,且求椭圆的标准方程;设a,b是椭圆c上两个不同的点,若直线ab在y轴上的截距为4,且oa,ob的斜率之和等于4,求直线ab的方程18. 若各项均不为零的数列的前n项和为,数列的前n项和为,且,证明数列是等比数列,并求的通项公式;设,是否存在正整数k,使得对于恒成立若存在,求出正整数k的最小值;若不存在,请说明理由答案和解析1.【答案】d【解析】解:椭圆的焦点在y轴上的椭圆,椭圆的焦点坐标是,故选:d直接利用椭圆方程求解椭圆的焦点坐标即可本题考查椭圆的简单性质的应用,考查计算能力2.【答案】a【解析】解:数列为等差数列,为其前n项和,故选:a由等差数列前n项和公式和通项公式得,由此能求出结果本题考查等差数列的前12项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题3.【答案】b【解析】解:各项均为正数的等比数列中,则,当且仅当时取等号故选:b利用等比数列的性质、基本不等式的性质即可得出本题考查了等比数列的性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题4.【答案】b【解析】解:因为椭圆的长轴为,b为短轴一端点,所以,即,又,解得;故选:b利用椭圆的长轴为,b为短轴一端点,若,求出a,b的关系,利用求出a,c的关系,求出椭圆的离心率即可本题考查椭圆的基本性质,注意椭圆中元素的几何意义,考查计算能力5.【答案】d【解析】解:命题p:存在,则:任意,命题p是假命题,:任意,是真命题,则,即故选:d写出原命题的否定,由命题p是假命题,得为真命题,再由判别式法求解本题考查命题的真假判断与应用,考查命题的否定,考查数学转化思想方法,是中档题6.【答案】c【解析】解:数列是等比数列,若n,p,则一定有;即对于任意等比数列,一定有“n,p,”是“”成立的充分条件,反之,在等比数列中,若“n,p,”是“”成立的必要条件,即由,一定得到n,p,则等比数列的公比不等于1,如数列2,2,2,由,不能得到数列可以是递增数列;递减数列;摆动数列;不能是常值数列故选:c由等比数列的性质结合充分必要条件的判定可知,若“n,p,”是“”成立的充分必要条件,则数列不可以是常值数列本题考查充分必要条件的判断及应用,考查等比数列的性质,是中档题7.【答案】a【解析】解:,而,由题知,又函数在上递增,令,解得:故得实数m的取值范围是故选:a根据不等式在区间上恒成立,结合二次函数的图象计算即可本题主要考查了函数解析式,恒成立问题的求解,转化思想的应用,二次函数闭区间上的最值以及单调性的应用8.【答案】c【解析】解:椭圆的左右焦点为,可得,p为椭圆上第一象限内任意一点,关于p的对称点为m,关于的对称点为n,如图:则的周长为:故选:c利用已知条件结合椭圆的性质,转化求解即可本题考查椭圆的简单性质以及椭圆的定义的应用,考查数形结合以及计算能力9.【答案】a【解析】解:由,得或,即,又函数的图象开口向下,所以数列前4项为负,当时,数列中的项均为负数,在的前提下,的最大值是故选:a根据数列的通项公式,求得数列的前4项为负值,从第8项开始也全部为负,因此,最大本题考查了数列的函数特性,解答的关键是分清在的前提下,什么情况下最大,什么情况下最小,题目同时考查了数学转化思想10.【答案】a【解析】解:若焦点在x轴上时,c点为椭圆短轴的端点时,取得最大角,设,则,解得若焦点在y轴上时,c点为椭圆短轴的端点时,取得最大角,设,则,解得综上可得:m的取值范围是故选:a对焦点分类讨论,c点为椭圆短轴的端点时,取得最大角,进而得出结论本题考查了椭圆的标准方程及其性质、分类讨论方法、三角函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题11.【答案】【解析】解:,当且仅当,即时取等号,的最大值为故答案为:根据即可求出,从而根据基本不等式即可求出,从而得出,从而得出的最大值本题考查了基本不等式求最值的应用,注意说明等号成立的条件,考查了计算能力,属于基础题12.【答案】6【解析】解:等比数列中,若,则,故答案为:6等比数列中,根据,可得,即可得出本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题13.【答案】【解析】解:对于,由,不一定有,反之也不成立,“”是“”的既不充分也不必要条件,故错误;对于,由,可得集合,与表示的平面区域如图:由,不能得到,反之成立,则,是的充分必要条件,故错误;对于,命题“对任意,有”的否定是“存在,有”故正确;对于,由,不能得到,反之成立,则p是q成立的必要不充分条件,故正确正确命题的序号是故答案为:由不等式的性质及充分必要条件的判定方法判断;画出图形,结合充分必要条件的判定方法判断;写出全称命题的否定判断本题考查命题的真假判断与应用,考查全称命题的否定,考查充分必要条件的判定,是中档题14.【答案】2【解析】解:延长,延长,交于n,则,又根据椭圆的定义知,所以,根据om是三角形的中位线可得,故答案为:2利用椭圆的性质求出,利用几何法求出即可考查椭圆的性质的应用,本题关键是作辅助线,中档题15.【答案】解:当命题p为真时,由可知函数的图象与x轴有两个交点即,即,则,解得;当命题q为真时,即方程表示焦点在x轴上的椭圆,得当p为假命题时,或当命题q为假命题时,或因此当命题p为假命题,q为假命题时,解得或故实数m的取值范围为或【解析】由p为真,得的图象与x轴有两个交点,由判别式大于0求解m的取值范围;求出方程表示焦点在x轴上的椭圆的m的取值范围,再由补集与交集思想求解命题p,q均为假命题的实数m的取值范围本题考查命题的真假判断与应用,考查函数零点的判定与椭圆的标准方程,是中档题16.【答案】解:因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;综上所述,不等式的解集为:当时解集为,当时解集为,当时,解集为;因为,由已知,可得即,由当且仅当,即,时取等号所以的最小值为【解析】由题意可得,然后结合二次不等式的求法,进行分类讨论可求;把代入函数,然后结合已知条件可求得,进行1的代换后利用基本不等式即可求解本题主要考查了含参数二次不等式的求解,体现了分类讨论思想的应用,还考查了利用1的代换,利用基本不等式求解最值,属于中档试题17.【答案】由题意可知,以及可知,解得椭圆的标准方程为设,直线ab的方程为联立,得则,由,解得,直线ab的方程为【解析】利用已知条件求出,代入即可;根据斜率之和等于4,求出k,代入直线方程求出即可考查椭圆的标准方程,直线和椭圆的综合应用,中档题18.【答案】解:证明:,由数列的前n项和为,数列的前n项和为及得,即为,由,可得,从而当时,得,即,所以,令,得,当时,由,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国磁性去毛刺机行业项目调研及市场前景预测评估报告
- 包装设计师知识考核试卷及答案
- 电影洗印员转正考核试卷及答案
- 制漆配色调制工三级安全教育(班组级)考核试卷及答案
- 1-己烯装置操作工内部技能考核试卷及答案
- 2025年智能灌溉系统在中药材种植中的技术创新可行性报告
- 2025年智能电网需求侧响应与电力市场改革的协同技术创新报告
- 中药灌肠考试试题及答案
- 固井工技能比武考核试卷及答案
- 水供应服务员综合考核试卷及答案
- 期中专题复习-词汇句型训练-2025-2026学年 译林版2024 英语八年级上册 原卷
- 2025年全国中小学校科普知识竞赛题库(+答案)
- 2.2创新永无止境教学课件 2025-2026学年度九年级上册 道德与法治 统编版
- 矿山爆破作业安全培训课件
- 2025-2026学年九年级英语上学期第一次月考 (四川成都专用) 2025-2026学年九年级英语上学期第一次月考 (四川成都专用)解析卷
- 2025全新劳动合同范本
- 高陡边坡稳定性控制技术及其工程实践
- 2026年中考语文专项复习:新闻考点+答题方法知识点 讲义(含练习题及答案)
- 病房环境清洁与消毒PDCA课件
- 【《A公司电线电缆产品营销策略浅析》5800字(论文)】
- 公司注册登记培训课件
评论
0/150
提交评论