6.4 Basic IIR Digital Filter Structures Then consider H 2.ppt_第1页
6.4 Basic IIR Digital Filter Structures Then consider H 2.ppt_第2页
6.4 Basic IIR Digital Filter Structures Then consider H 2.ppt_第3页
6.4 Basic IIR Digital Filter Structures Then consider H 2.ppt_第4页
6.4 Basic IIR Digital Filter Structures Then consider H 2.ppt_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter6 DigitalFilterStructures 6 0Introduction Theconvolutionoperationinvolvesaddition multiplicationandtimeshift ordelay ForanIIRsystem i e anLTIsystemwithaninfinite lengthimpulseresponse thisapproachisnotpractical ThemostfundamentalcharacterizationofanLTIdigitalfilteristheconvolutionrepresentation 6 0Introduction ForacausalFIRsystem theconvolutionrepresentationisoftheform or However anIIRsystemcanbedescribedbyalinearconstant coefficientdifferenceequation isquitepractical 6 0Introduction Now theactualimplementationofadigitalfiltercouldbeeitherinsoftwareorhardwareformdependingonapplications InthisChapter weconsidertherealizationproblemofcausalIIRandFIRfiltersandoutlinerealizationmethodsbasedonboththetime domainandthetransform domainrepresentations 6 0Introduction Torealizeadigitalfilter thekeyisthatwemustfirstdescribethestructureofthedigitalfilterusingtheblockdiagramrepresentation calledthestructuralrepresentation Therearevariousformsofthestructuralrepresentationofadigitalfilter ThisistheemphasisinthisChapter 6 1BlockDiagramRepresentation 6 1 1BasicBuildingBlocksTheblockdiagramrepresentationconsistsofthesethreebasicoperations 1 Addition 2 Multiplication 3 Unitdelay 6 1BlockDiagramRepresentation Areviewofafirst orderLTIdigitalfilterConsidertheLTIdigitalsystem 6 1BlockDiagramRepresentation Fromthisreview weoftenneedtoexpressthedifferenceequationintotherecursiveformlikethis 6 1BlockDiagramRepresentation Thereareseveraladvantagesinrepresentingthedigitalfilterinblockdiagramform 1 Itiseasytowritedownthecomputationalalgorithmbyinspection 2 Itiseasytoanalyzetheblockdiagramtodeterminetheexplicitrelationbetweentheoutputandtheinput 3 Itiseasytomanipulateablockdiagramtoderiveother equivalent blockdiagramsyieldingdifferentcomputationalalgorithm 4 Itiseasytodeterminethehardwarerequirements 5 Itiseasiertodevelopblockdiagramrepresentationsfromthetransferfunctiondirectlyleadingtovarietyof equivalent representations 6 1BlockDiagramRepresentation 6 2EquivalentStructures Ourmainobjectiveinthischapteristodevelopvariousrealizationsofagiventransferfunction 6 2EquivalentStructures Inthiscoursewerestrictourattentiontoadiscussionofsomecommonlyusedstructures Underinfiniteprecisionarithmeticanygivenrealizationofadigitalfilterbehavesidenticallytoanyotherequivalentstructure 6 2EquivalentStructures However inpractice duetothefinitewordlengthlimitations aspecificrealizationbehavestotallydifferentlyfromitsotherequivalentrealizations Hence itisimportanttochooseastructurethathastheleastquantizationeffectswhenimplementedusingfiniteprecisionarithmetic 6 2EquivalentStructures Onewaytoarriveatsuchastructureistodeterminealargenumberofequivalentstructures analyzethefinitewordlengtheffectsineachcase andselecttheoneshowingtheleasteffects Incertaincases itispossibletodevelopastructurethatbyconstructionhastheleastquantizationeffects 6 2EquivalentStructures Here wereviewsomesimplerealizationsthatinmanyapplicationsarequiteadequate 6 3BasicFIRDigitalFilterStructures WefirstconsidertherealizationofFIRdigitalfilters AcausalFIRfilteroforderNischaracterizedbyatransferfunctionH z givenby Inthetime domaintheinput outputrelationoftheaboveFIRfilterisgivenby 6 3BasicFIRDigitalFilterStructures 6 3 1DirectFormsThedirectformstructureofanFIRfiltercanbeobtainedfromtheconvolutionsumofthefilter Ingeneral theconvolutionsumrequiresN 1multipliersandNtwo inputadders SupposethattheorderofanFIRfilterisN 4 thismeansthatthelengthoftheimpulseresponseisN 1 5 6 3BasicFIRDigitalFilterStructures Expandingtheconvolutionsumexpression Thedirectformstructureisshowninthefollowing 6 3BasicFIRDigitalFilterStructures Wecanobtainanotherdirectformstructurebythetransposeoperation 6 3BasicFIRDigitalFilterStructures 6 3 2CascadeFormAhigher orderFIRtransferfunctioncanalsoberealizedasacascadeofFIRsectionswitheachsectioncharacterizedbyeitherafirst orderorasecond orderrealcoefficienttransferfunction ThewayistofactorthetransferfunctionoftheFIRfilter 6 3BasicFIRDigitalFilterStructures whereK N 2ifNiseven andK N 1 2ifNisoddandH z mustcontainafirst ordersection If 2k 0 thenthesectionisafirst ordersection Infact afirst ordersectioncanbeviewedasasecond ordersectionwith 2k 0 Let ssee 6 3BasicFIRDigitalFilterStructures Asecond ordersection 6 3BasicFIRDigitalFilterStructures A6 orderFIRfilterincascadeform 6 3BasicFIRDigitalFilterStructures 6 3 4Linear PhaseFIRStructuresRemembertheconditionsforwhichanFIRdigitalfilterhaslinearphase Foralinear phaseFIRdigitalfilter itsimpulseresponsesatisfiesthesymmetryorantisymmetryproperty 6 3BasicFIRDigitalFilterStructures Thesymmetry orantisymmetry propertyofalinear phaseFIRfiltercanbeexploitedtoreducethenumberofmultipliersintoalmosthalfofthatinthedirectformimplementations Consideralength 7Type1FIRtransferfunctionwithasymmetricimpulseresponse 6 3BasicFIRDigitalFilterStructures Thetransferfunctionisobtainedfrom 6 3BasicFIRDigitalFilterStructures Fromtheexpression weobtaintherealizationshownbelow 6 3BasicFIRDigitalFilterStructures Foralength 8Type2FIRfilter itstransferfunctioncanbeexpressedas 6 3BasicFIRDigitalFilterStructures Fromthetwoexamples weseethattheType1linear phasestructureforalength 7FIRfilterrequires4multipliers whereasadirectformrealizationrequires7multipliers andtheType2linear phasestructureforalength 8FIRfilterrequires4multipliers whereasadirectformrealizationrequires8multipliers 6 3BasicFIRDigitalFilterStructures SimilarsavingsoccursintherealizationofType3andType4linear phaseFIRfilterswithantisymmetricimpulseresponses FIR级联型结构特点 由于这种结构所需的系数比直接型多 所需乘法运算也比直接型多 很少用 由于这种结构的每一节控制一对零点 因而只能在需要控制传输零点时用 其他常用结构 1 频率抽样型结构2 快速卷积结构3 格型滤波器 6 4BasicIIRDigitalFilterStructures IIRdigitalfilterisanotherimportantdigitalfilterthatwemainlydiscussinthiscourse Thecharacteristicsareinfinite lengthimpulseresponseandnonlinear phase ThetransferfunctionofacausalIIRdigitalfilterisoftenintheform 6 4BasicIIRDigitalFilterStructures 6 4 1DirectFormsFromrelationshipbetweenthedifferenceequationandthetransferfunction thedifferenceequationcanbewrittenas 6 4BasicIIRDigitalFilterStructures Inordertodevelopthedirectform wecanviewthetransferfunctionasaproductoftwotransferfunctions 6 4BasicIIRDigitalFilterStructures Forexample letsconsiderforsimplicitya3 orderIIRfilterwithatransferfunction 6 4BasicIIRDigitalFilterStructures WefirstconsiderthestructureofH1 z 6 4BasicIIRDigitalFilterStructures ThenconsiderH2 z 6 4BasicIIRDigitalFilterStructures ThenconsiderH2 z 6 4BasicIIRDigitalFilterStructures ThencascadethestructuresofH1 z andH2 z weobtainthedirectformIstructureoftheIIRdigitalfilter DirectformI 6 4BasicIIRDigitalFilterStructures ExchangingtheorderofH1 z andH2 z andreducing weobtainthedirectformIIstructureofH z 6 4BasicIIRDigitalFilterStructures ExchangingtheorderofH1 z andH2 z andreducing weobtainthedirectformIIstructureofH z DirectformII 6 4BasicIIRDigitalFilterStructures Thetransposeofthisstructureissketchedinthefollowingfigure directformI结构缺点 需要2N个延迟器 z 1 太多 系数ai bi对滤波器性能的控制不直接 对极 零点的控制难 一个ai bi的改变会影响系统的零点或极点分布 对字长变化敏感 对ai bi的准确度要求严格 易不稳定 阶数高时 上述影响更大 directformII优缺点 优点 延迟线减少一半 为N个 可节省寄存器或存储单元 缺点 同直接型 通常在实际中很少采用上述两种结构实现高阶系统 而是把高阶变成一系列不同组合的低阶系统 一 二阶 来实现 6 4BasicIIRDigitalFilterStructures 6 4 2CascadeRealizationsByexpressingthenumeratoranddenominatorpolynomialsofthetransferfunctionH z asaproductofpolynomialsoflowerdegree adigitalfilterisoftenasacascadeoflow orderfiltersections Forexample 6 4BasicIIRDigitalFilterStructures Thereare9cascaderealizationsobtainedbydifferentpole zeropairingsareshownbelow 6 4BasicIIRDigitalFilterStructures Therearealso9cascaderealizationsobtainedbydifferentorderingofsectionsareshownbelow 6 4BasicIIRDigitalFilterStructures basedonpole zero pairingsandordering Therearealtogetheratotalof36differentcascaderealizationsof 6 4BasicIIRDigitalFilterStructures Usually thepolynomialsarefactoredintoaproductoffirst orderandsecond orderpolynomials Intheabove forafirst orderfactor 6 4BasicIIRDigitalFilterStructures Byfactoringthenumeratorandthedenominatorpolynomials Nowletsconsiderthethird ordertransferfunction 6 4BasicIIRDigitalFilterStructures Letsfirstconsiderthesection1and2 6 4BasicIIRDigitalFilterStructures Onepossiblecascaderealizationisgivenby First ordersection Second ordersection 级联型结构的优缺点 优点 简化实现 用一个二阶节 通过变换系数就可实现整个系统 极 零点可单独控制 调整 调整 可单独调整第对零点 调整 可单独调整第对极点 各二阶节零 极点的搭配可互换位置 优化组合以减小运算误差 可流水线操作 缺点 二阶节电平难控制 电平大易导致溢出 电平小则使信噪比减小 6 4BasicIIRDigitalFilterStructures 6 4 3ParallelRealizationsAnIIRtransferfunctioncanberealizedinaparallelformbymakinguseofthepartial fractionexpansionofthetransferfunction Apartial fractionexpansionofthetransferfunctionintheformofthefollowingequationleadstotheparallelformI 6 4BasicIIRDigitalFilterStructures ParallelformI thedegreeofthenumeratorpolynomialislessthanthedegreeofthedenominatorpolynomial ParallelformI TheparallelrealizationofIIRdigitalfilterconsistsofseveral2 orderbasicsectionswithreal coefficients 6 4BasicIIRDigitalFilterStructures Thetransferfunctionmaybeexpressedintheform ParallelformII ParallelformII thedegreeofthenumeratorpolynomialisequaltothedegreeofthedenominatorpolynomial 6 4BasicIIRDigitalFilterStructures Foreachsection thedirectformIrealizationsmaybe ParallelformI 6 4BasicIIRDigitalFilterStructures Foreachsection thedirectformIIrealizationsmaybe ParallelformII 6 4BasicIIRDigitalFilterStructures Dividingthenumeratoranddenominatorpolynomialsbyz2weobtainthedirectformexpressionofH z Example6 3Wedevelopdifferentrealizationsofthethird orderIIRtransferfunction 6 4BasicIIRDigitalFilterStructures ByfactoringH z wehave DirectformII ThedirectformIIrealizationisshownas 6 4BasicIIRDigitalFilterStructures Cascaderealization Onepossiblecascaderealizationisshownas 6 4BasicIIRDigitalFilterStructures Takingthepartial fractionexpansionofthetransferfunctioninz 1andguaranteeingthecoefficientstobereal ParallelformI 6 4BasicIIRDigitalFilterStructures ThecorrespondingparallelformIIrealizationisshownontheright TheexpansionofH z maybeintheform 并联型结构是用的加法器 乘法器 延时单元基本与级联结构相同 它只能独立的调整各极点的位置 不能单独调整零点的位置 但并联结构的误差比级联结构的运算误差小 6 5RealizationUsingMATLAB AlthoughtherealizationsofFIRandIIRdigitalfilterscanbeunderstoodeasily itisverydifficulttoobtainthecorrespondingexpressionsofeitherthecascaderealizationortheparallelrealization BytheuseofMATLAB thisproblemwillbecomeeasier 6 5RealizationUsingMATLAB TheM filetoobtainthecascaderealization zp2sosUsage sos zp2sos z p k Thestatementgeneratesamatrixsoscontainingthecoefficientsofeachsecond ordersectionoftheequivalenttransferfunctionH z determinedfromitspole zeroform 6 5RealizationUsingMATLAB sosisanL 6matrixoftheform Listhenumberofsections 6 5RealizationUsingMATLAB Inordertoobtainthepole zeromodelofthefilter anotherM filecanbeusedtodothis z p k tf2zp num den Example6 4Wedevelopthesecond orderfactorsofthesixth orderFIRtransferfunction 6 5RealizationUsingMATLAB num input Numeratorcoefficientvector den input Denominatorcoefficientvector z p k tf2zp num den sos zp2sos z p k Runprogram6 1andinputthevectors 50 428 0213 897 426 0931 and 1000000 theresultis sos 50 4000 35 280016 80001 0000001 00000 87500 25001 0000001

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论