关于数学课标修订变化情况解读11.doc_第1页
关于数学课标修订变化情况解读11.doc_第2页
关于数学课标修订变化情况解读11.doc_第3页
关于数学课标修订变化情况解读11.doc_第4页
关于数学课标修订变化情况解读11.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于数学课标修订变化情况解读一、修改工作的基本过程2005年5月,教育部成立义务教育阶段数学课程标准(实验稿)修订工作组,启动修改工作。修订工作组首先到实验区进行实地调研,通过问卷、听课和访谈等方式,听取第一线教师的意见;之后,针对课程标准的框架、设计理念、课程目标、内容标准、实施建议等部分,进行了认真的讨论与研究,完成修改初稿。2006年6月至9月,向全国30多位专家、学者和第一线教师寄发修改稿的初稿和征求意见表,邀请几位中科院院士和数学家座谈,征求对修改稿的意见。在听取意见的基础上,修订工作组对修改初稿又进行了认真修改,形成全日制义务教育数学课程标准(实验修订稿)。2011年3月下半月,各科课标进行审查,目前审查工作基本结束。 二、修改课程标准的基本原则 修改组确定的标准修改的基本原则和思路是:修改的基础是课程改革4年的实践和调查研究的结果;修改应稳步进行,使得标准更加准确、规范、明了、全面;增强可操作性,更适合于教材编写、教师教学、学习评价。明确修改过程中要进一步处理好以下几个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是生活情境和知识系统性的关系。 三、修改的主要方面 1体例与结构的调整 本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论。在结构上有两处调整。 一是前言内容做了较大的调整。在前言重点阐述了标准的指导思想、意义与功能。明确了标准应以中华人民共和国义务教育法和全面推进素质教育,培养创新型人才为依据。明确了标准的意义和功能。在前言中指出,“标准提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。标准是教材编写、教学、评估和考试命题的依据。” 二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用。这样大大减少了标准正文的篇幅。 2基本理念的修改 一是阐述了数学意义与性质,数学教育的作用和义务教育阶段数学课程的创新特征。例如,对于什么是“数学”?将原来“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”改为“数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的功能。义务教育阶段的数学课程具有公共基础的地位,课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展 二是对基本理念的表述做了一些修改。标准提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。 将原来的第3、4两条合并成一条,整体上阐述数学教学过程的特征,“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法”。 3设计思路的修改 标准中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述。将“空间与图形”改为“图形与几何”。确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出描述。 4学生培养目标的修改学生的培养目标在具体表述上做了修改,在几年实验研究的基础上,对于课程改革倡导的使学生经历数学学习过程,学会数学思考等方面的经验进行了概括,归纳出基本思想和基本活动经验。在“双基”的基础上,提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验;对于问题解决能力方面,在原来分析问题和解决问题能力的基础上,进一步提出培养学生发现问题和提出问题的能力。常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。 5具体内容和表述方式的修改对于三个学段的具体内容进行了适当调整对“数与代数”,“图形与几何”“统计与概率”和“综合与实践”四个领域的内容进行了适当的修改。新修订课标主要呈现以下九大变化1. 基本理念“三句”变“两句”, “6条”改“5条”:原来的“三句话”:人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展现在的“两句话”:人人都能获得良好的数学教育不同的人在数学上得到不同的发展(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)“6条”改“5条”:在结构上由原来的6条改为5条,将原标准第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。原课标: 数学课程数学数学学习数学教学评价信息技术修改后:数学课程课程内容(新增)教学活动(合并)学习评价信息技术2.理念中新增加的提法:要处理好四个关系有效的教学活动是什么数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合3.关于数学观的修改:原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。课标修改稿:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。4.“双基”变“四基”。“双基”:基础知识、基本技能;“四基”:基础知识、基本技能、基本思想、基本活动经验“四基”与数学素养:掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验国家数学课程标准制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张练中学,相信熟能生巧,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。史宁中教授指出:“基本思想主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。他系统地为我们解读了这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,陈老师的分析让我认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。5.关于设计思路的修改:学段划分保持不变;对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;对四个学习领域的名称作适当调整;对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。附录1 课程目标的术语解释标准使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度。这些词的基本含义如下。 了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。 理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。 掌握:在理解的基础上,把对象用于新的情境。 运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。 经历:在特定的数学活动中,获得一些感性认识。 体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。 探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。说明:在标准中,使用了一些词,表述与上述术语同等水平的要求程度。这些词与上述术语之间的关系如下:(1)了解同类词:知道,说出,辨认,识别。实例:知道三角形的内心和外心;识别同位角、内错角、同旁内角。(2)理解同类词:认识,会。实例:认识三角形;会用长方形、正方形、三角形、平行四边形或圆拼图。(3)掌握同类词:能。实例:能认、读、写万以内的数,能用数表示物体的个数或事物的顺序和位置。(4)运用同类词:证明。实例:证明“角角边”定理:两角及其中一组等角的对边分别相等的两个三角形全等。(5)经历同类词:感受、尝试。实例:在具体情境中感受大数的意义。 尝试回顾解决问题的过程。(6)体验同类词:体会。实例:结合具体情境,体会整数四则运算的意义。6四个领域名称的变化:原课标:数与代数、空间与图形、统计与概率、实践与综合应用修改后:数与代数、图形与几何、统计与概率、综合与实践7.主要的关键词的变化:原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力修改后:数感、符号意识(修改)、运算能力(增加)、模型思想(增加)、空间观念、几何直观(增加)、推理能力、数据分析观念(增加)最近一次修改又加上了:应用意识、创新意识。符号感为何改为符号意识?符号感(Symbol Sense)原课标:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”修改稿:“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。”符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。8.关于课程目标的修改:在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。课程目标提法上的一些变化:明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。提出了培养学生发现问题、提出问题、分析问题和解决问题能力。(四个“问题”)目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。学段目标的表述方式有所改变9.关于内容标准的修改结构上的变化:数与代数的变化:第一学段:增加“能进行简单的整数四则混合运算(两步)”(提高要求)使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。第二学段:增加的内容: 增加“经历与他人交流各自算法的过程,并能表达自己的想法”。 增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。 (回归) 增加“在具体情境中,了解常见的数量关系:总价=单价数量、路程=速度时间,并能解决简单的实际问题”。 (回归) 增加“结合简单的实际情境,了解等量关系,并能用字母表示”。调整的内容: 将“理解等式的性质”,改为“了解等式的性质” 将“会用等式的性质解简单的方程(如3x+25,2x-x3)”,改为“能解简单的方程(如3x+25,2x-x3)”。使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。图形与几何的变化:第一学段删除的内容(整体上看,降低要求) 删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。 删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。 删除“会看简单的路线图”,相关要求放入第二学段。 删除“体会并认识千米、公顷”,相关要求放入第二学段。降低要求对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。使一些目标的表述更加准确和完整。例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。第二学段:删掉“了解两点确定一条直线和两条相交直线确定一个点”。增加“知道扇形”。使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。统计内容主要变化如下:第一学段与标准相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。第二学段与标准相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。 加强体会数据的随机性。在以前的学习中,学生主要是依靠概率来体会随机思想的,标准(修改稿)希望通过数据分析使学生体会随机思想。(新增)概率内容主要变化如下:(要求“降”中有“升”) 第一学段、第二学段的要求降低。在第一学段,去掉了标准对此内容的要求。第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。 明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。第一学段:鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,删除“象形统计图、一格代表一个单位的条形统计图”、“平均数”的内容,相关要求放在了第二学段。删除“知道可以从报刊、杂志、电视等媒体中获取数据信息”。删除“不确定现象”部分,相关要求放在了第二学段。第二学段:删除“中位数”、“众数”的内容,相关要求放在了第三学段。删除“体会数据可能产生的误导”。降低了“可能性”部分的要求,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述,定量描述放入第三学段。加强体会数据的随机性 这是修改后的一个重要变化。原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。 这种变化从“数据分析观念”核心词的表述也可以看出。综合与实践的变化: 统一了三个学段的名称,进一步明确了其目地和内涵。“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。 一、基本理念1数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育, 原为:人人学有价值的数学;人人都能获得必需的数学不同的人在数学上得到不同的发展。2课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。明确提出课程内容的呈现应注意层次性和多样性。3教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。强调了接受学习的作用学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证原为:观察、实验、猜测、验证、推理与交流等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,对教师的主导作用赋予了新的意义通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。4学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要原为:更要关注学习的过程;要关注学生数学学习的水平,也要原为更要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。5信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。新增要求要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。二、设计思路(一) 关于学段为了体现义务教育数学课程的整体性,标准统筹考虑了九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(13年级)、第二学段(46年级)、第三学段(79年级)。(二) 关于目标标准提出义务教育阶段数学课程的总体目标和学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。数学学习活动的目标包括结果目标和过程目标。标准使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度(术语解释见附录1)。(三) 关于课程内容在各学段中,标准安排了四个方面的课程内容:“数与代数”,“图形与几何原为空间与图形”,“统计与概率”,“综合与实践”原为实践与综合运用。数与代数“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力新增的要求,在数与代数中提出推理能力的培养,初步形成模型思想明确提出。数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力还有助于学生理解运算的算理,能够寻求合理简洁的运算途径解决问题。新增的要求建立和求解模型的过程包括:从现实生活或者具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习兴趣和应用意识。图形与几何“图形与几何”的主要内容有:空间和平面的基本图形,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观新增的要求与推理能力。空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中新增的要求。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)证明结论。明确了合情推理与演绎推理的涵义在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。推理能力的发展应贯穿在整个数学学习过程中。统计与概率“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。在“统计与概率”的教学中,应帮助学生逐渐建立起数据分析观念原为:统计观念,了解随机现象新增了随机现象。数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律。在概率的学习中,帮助学生了解随机现象是重要的。在义务教育阶段,所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。综合与实践“综合与实践

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论