


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除高中数学排列组合及概率的基本公式、概念及应用1 分类计数原理(加法原理):.分步计数原理(乘法原理):.2 排列数公式 :=.(,N*,且)规定.3 组合数公式:=(N*,且).组合数的两个性质:(1)= ;(2) +=.规定.4 二项式定理 ;二项展开式的通项公式.的展开式的系数关系:; ;。5 互斥事件A,B分别发生的概率的和:P(AB)=P(A)P(B)个互斥事件分别发生的概率的和:P(A1A2An)=P(A1)P(A2)P(An)6 独立事件A,B同时发生的概率:P(AB)= P(A)P(B).n个独立事件同时发生的概率:P(A1 A2 An)=P(A1) P(A2) P(An)7 n次独立重复试验中某事件恰好发生k次的概率:8 数学期望:数学期望的性质(1). (2)若,则.(3) 若服从几何分布,且,则.9方差:标准差:=.方差的性质:(1);(2)若,则.(3) 若服从几何分布,且,则.方差与期望的关系:.10正态分布密度函数:,式中的实数,(0)是参数,分别表示个体的平均数与标准差.对于,取值小于x的概率:.11 在处的导数(或变化率):.瞬时速度:.瞬时加速度:.12 函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.13 几种常见函数的导数:(1) (C为常数).(2) .(3) .(4) .(5) ;.(6) ; .14 导数的运算法则:(1).(2).(3).15 判别是极大(小)值的方法:当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极大值;(2)如果在附近的左侧,右侧,则是极小值.16 复数的相等:.()17 复数的模(或绝对值)=.18 复平面上的两点间的距离公式: (,).19实系数一元二次方程的解 实系数一元二次方程,若,则;若,则;若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.20解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合21解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?22排列数公式是: 组合数公式是: 排列数与组合数的关系是:组合数性质:= += = 二项式定理: 二项展开式的通项公式:概率统计23有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。(1)若事件A、B为互斥事件,则P(A+B)=P(A)+P(B)(2)若事件A、B为相互独立事件,则P(AB)=P(A)P(B)(3)若事件A、B为对立事件,则P(A)+P(B)=1一般地,(4)如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率: 24抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;分层抽样,主要特征分层
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东云浮市郁南县林业局招聘生态管护人员2人模拟试卷及答案详解(各地真题)
- 新入职岗前培训考试题及答案解析
- 法律方面的课件
- 2025年音乐专业试题及答案
- 中控工安全培训试题及答案解析
- 2025年农村绿色能源技术发展与应用研究报告
- 2025北京昌平区统计局面向社会招聘经济运行监测工作专班助统员1人模拟试卷及答案详解一套
- 2025年绿色建筑设计与施工技术创新报告
- 2025-2030年新能源产业数字化转型与智能化发展研究报告
- 2025-2030工业金刚石在精密加工领域技术突破报告
- 诺如病毒胃肠炎诊疗方案(2025年版)解读学习课件
- 农业综合行政执法大比武试题库(试题及答案)
- 2025年零碳园区发展白皮书-荣续ESG智库
- 国企新员工入职纪检培训
- 统编版(2024)八年级上册道德与法治5.2《诚实守信》教案
- 质量经理工作汇报
- 学堂在线 走进心理学 章节测试答案
- 学堂在线 极区航海导航保障 期末考试答案
- 化工安全技术课件下载
- 初中诚实守信说课课件
- 小儿急性胰腺炎护理常规
评论
0/150
提交评论