




免费预览已结束,剩余8页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER 3MODELING VOLATILITY Answers to Questions1. Suppose that the et sequence is the ARCH(q) process et = vt . a0 +a1(et-1)2 +.+ aq (et-q)21/2Show that has the same form as the conditional variance of (3.1).Answer: Regardless of whether or not the actual regression residuals are used, the expected value of E(et)2 is:Et-1(et)2 = a0 + a1E(et-1)2 + . + aqE(et-q)2 Now using (3.8), et = vt . a0 +a1(et-1)2 +.+ aq (et-q)21/2 so that:Et-1(et)2 = Et-1(vt)2 (a0 + a1 (et-1)2 +.+ aq (et-q)2) = Et-1(vt)2 . Et-1a0 + a1 (et-1)2 +.+ aq (et-q)2 = a0 + a1 (et-1)2 +.+ aq (et-q)2Thus, using either (3.1) or (3.8):Et-1(et)2 = a0 + a1(et-1)2 +.+ aq (et-q)22. Consider the ARCH-M model represented by equations (3.23) through (3.25). Recall that et is a white noise disturbance; for simplicity let E(et)2 = E(et-1)2 = . = 1. A. Find the unconditional mean: Eyt. How does a change in d affect the mean? Using the example of section 6, show that changing b and d from (-4, 4) to (-1, 1) preserves the mean of the yt sequence. Answer: Combine (3.23), (3.24) and (3.25) and take the expectation of the result to obtain: Eyt = E (mt + et) = E (b + d.ht + et) = E b + da0 +ai (et-i)2 + etSince E(et)2 = E(et-1)2 = . = 1, and Eet = 0 it follows that: Eyt = b + d.(a0 +ai)Increasing b has a 1:1 effect on the mean; the effect of a one-unit change in d in Eyt is a0 + Sai. It is straightforward to show that a0 + Sai = 1. Since E(et)2 = E(vt)2ht = 1 and E(vt)2 = 1, it follows that E(ht) = 1. Hence: Eht = Ea0 + Sai (et-i)2 = a0 + Sai = 1. Given b = -4, d = 4, the unconditional mean of yt is:Eyt = -4 + 4 (a0 + Sai) = -4 + 4.1 = 0.Similarly, if b = -1 and d = 1, then Eyt = 0. Hence, changing b and d from (-4, 4) to (-1, 1) preserves the mean of the yt sequence.B. Show that the unconditional variance of yt when ht = a0 + a1 (et-1)2 does not depend on b, d, and a0.Answer: From Equation (3.23), yt = mt + et so that the unconditional variance of yt is: Var(yt) = var(mt) + var(et) + 2 Cov(mt,et). Note that: Var(et) = E(et)2 - E(et)2 = 1 - 02 = 1. Next, form cov(mt,et) as:Cov(mt,et) = E (mtet) - E(mt) . E(et) = E (b+d.ht) . et - E (b+d.ht) . 0 = E b+d . (a0 +a1(et-12) .et = E b.et+d . (a0 +a1(et-1)2) et = b.E(et)+d . E(a0 +a1(et-1)2 )et = b.0+d.0 = 0Now, find Var(mt) as:Var(mt) = var(b+d.ht) = d2var(ht) = d2vara0 +a1(et-1)2 = d2(a1)2var(et-1)2.Hence, the unconditional variance of yt does not depend on b and a0 since var(yt) = var(mt + et) and cov(ut, et) = 0. Thus:Var(yt) = 1 + d2(a1)2 . var(et-1)2However, as opposed to the assertion in the question, increasing the absolute value of d increases var(yt).3. Bollerslev proved that the ACF of the squared residuals resulting from theGARCH (p, q) process represented by (3.9) acts as an ARMA (m, p) process where m = max(p, q). You are to illustrate this result using the examples below.A. Consider the GARCH(1,2) process: ht = a0 + a1(et-1)2 + a2 (et-2)2 + b1 ht-1. Following the steps in the question, it is possible to write: (et)2 = a0 + (a1 + b1) (et-1)2 + a2 (et-2)2 - b1ht-1 + htwhere: ht = (et)2 - ht Show that ht is serially uncorrelated and that the (et)2 sequence acts as an ARMA(2,1) process.Answer: Recall that: et = vtwhere E(vt) = 0 and Var(vt) = 1. To show that ht is serially uncorrelated, we need to prove Cov(ht, hs) = 0, for ts. By definition, ht = (et)2 - ht, and et = so that:ht = (et)2 - ht = (vt)2ht - ht = (vt)2 - 1 ht.Since vt and ht are independent, it follows that:E(ht) = E(vt)2 - 1 ht= E (vt)2-1E(ht) = (1-1) . E(ht) = 0, t.As such, cov(ht,hs) = E ht-E(ht)hs-E(hs) = E (ht.hs) = E (vt)2-1ht.(vs)2-1hs cov(ht, hs) = E(vt)2-1E(ht).E(vs)2-1E(hs) = 0Thus, ht is serially uncorrelated. To show that the (et)2 sequence acts as an ARMA(2,1) process use the results that:E(ht) = 0 andCov (ht,hs) = 0, for ts.Since (et)2 = a0 + (a1+b1) (et-1)2 + a2 (et-2)2 - b1ht-1 + ht, it is immediately clear that the (et)2 sequence acts as an ARMA(2,1) process with autoregressive coefficients (a1+b1), a2, a moving average coefficient -b1, and ht as a white noise process.B. Consider the GARCH(2, 1) process: ht = a0 + a1(et-1)2 + b1 ht-1 + b2 ht-2. Show that it is possible to add ht to each side to obtain:(et)2 = a0 + a1(et-1)2 + b1 ht-1 + ht + b2 ht-2. Show that adding and subtracting the terms b1(et-1)2 and b2 (et-2)2 to the right-hand-side of this equation yields an ARMA(2,2) process.Answer: Given the GARCH(2, 1) process, ht = a0 + a1(et-1)2 + b1 ht-1 + b2 ht-2, it is possible to add ht = (et)2 - ht to each side to obtain:ht + (et)2 - ht = a0 + a1(et-1)2 + b1 ht-1 + b2ht-2 + (et)2 - ht. Hence: (et)2 = a0 + a1 (et-1)2 + ht + b1 ht-1 + b2 ht-2. Now, add and subtract the terms b1(et-1)2 and b2(et-2)2 to the right-hand-side of above equation yields:(et)2 = a0 + a1(et-1)2 + ht + b1ht-1 + b2ht-2 = a0 + a1(et-1)2 + ht + b1 ht-1 - b1(et-1)2 + b1(et-1)2 + b2ht-2 - b2(et-2)2 + b2(et-2)2 = a0 + a1(et-1)2 + ht - b1(et-1)2 - ht-1 + b1(et-1)2 - b2 (et-2)2 - ht-2+ b2(et-2)2 (et)2 = a0 + (a1 + b1)(et-1)2 + b2(et-2)2 + ht - b1ht-1 - b2ht-2Since ht acts as a white noise process, the (et)2 sequence acts as an ARMA(2,2) process with AR coefficients (a1 + b1) andb2 and MA coefficients (-b1), and (-b2).C. Provide an intuitive explanation of the statement:The Lagrange Multiplier for ARCH errors test cannot be used to test the null of white noise squared residuals against an alternative of a specific GARCH(p,q) process.Answer: Every GARCH(p,q) process has a representation ofARMA(m,p) process for the ACF of the squared residuals, where m=max(p,q). So that the Lagrange Multiplier for ARCH errors test cannotbe used to test the null of white noise squared residuals againstan alternative of a specific GARCH(p,q) process.D. Sketch the proof of the general statement that the ACF of the squared residuals resulting from the GARCH(p,q) process represented by (3.9) acts as an ARMA(m,p) process where m=max(p,q).Answer: Consider the GARCH(p,q) process: ht = a0 + ai(et-i)2 +bjht-j. Add the expression (e2t - ht) to each side to give:(et)2 = a0 +ai(et-i)2 +bjht-j + (et)2 - ht = a0 +ai(et-i)2 + bj(et-j)2 -bj(et-j)2 +bjht-j + (et)2 - ht = a0 + ai (et-i)2 +bj(et-j)2 -bj(et-j)2 - ht-j + (et)2 - ht = a0 + (a + b1)(et-1)2 + (a2 + b2) (et-2)2 + . + (am + bm)(et-m )2 -b1ht-1 - b2ht-2 -.-bp ht-p + ht,where ht (et)2 - ht, m = max(p,q), ai 0 for i q, and bj 0 for j p. Hence: (et)2 = a0 +(ak + bk)(et-k)2 + ht - b1ht-1 - b2ht-1 -b2ht-2 -.- bp ht-p, where m = max(p,q), ai 0 for i q, bj 0 for j p.Since ht is serially uncorrelated the ACF of the squared residuals resulting from the GARCH(p, q) process acts as an ARMA(m, p) process where m = max(p, q).4. Let y0 = 0 and let the first five realizations of the et sequence be: (1,-1,-2, 1, 1). Plot each of the following sequences:Model 1: yt = 0.5yt-1+etModel 2: yt = et - (et-1)2Model 3: yt = 0.5yt-1 + et - (et-1)2Answer: The time paths of the three models are shown in Figure 3M-1. Note that Model 3 contains autoregressive and ARCH-M effects. The effect of introducing the autoregressive term in going from Model 2 to Model 3 increases the volatility of the series. Similarly, the effect of introducing the ARCH-M effect in going from Model 1 to Model 3 is to increase the volatility of the series. The autoregressive coefficients and ARCH-M effects interact.B. For each of the three models, calculate the sample mean and variance of yt.Answer: For Model 1, the realizations are: (1,-0.5,-2.25,-0.125, 0.9375). The sample mean of Model 1 is: (1/5) (1 - 0.5 - 2.25 -0.125 + 0.9375) = -0.1875, and the sample variance is: (1/5) 12 +(-0.5)2+(-2.25)2 +(-0.125)2+(0.9375)2 - (-0.1875)2 = 1.40625.For Model 2, the realizations are: (1,-2,-3,-3, 0). The sample mean of Model 2 is: (1/5) (1-2-3-3+0) = -1.4, and the sample variance is (1/5) 12 +(-2)2+(-3)2+(-3)2+0 - (-1.4)2 = 2.64.For Model 3, the realizations are: (1,-1.5,-3.75,-4.875, -2.4375). The sample mean is (1/5) (1-1.5-3.75-4.875-2.4375) = -2.3125 and the sample variance is: (1/5) 12+ (-1.5)2 + (-3.75)2 + (-4.875)2 + (-2.4375)2 - (-2.3125)2 = 4.05625.Hence:Model Mean Variance 1 -0.1875 1.40625 2 -1.4 2.64 3 -2.3125 4.056255. The file labeled ARCH.XLS contains the 100 realizations of the simulated yt sequence used to create the lower right-hand panel of Figure 3.10. The following program will reproduce the reported results.Sample Program for RATS Users:all 100;* allocates space for 100 observationsopen data a:arch.xls;* opens the data set assumed to be on drive a:data(format=xls,org=obs) table / y;* produces the summary statistics for the ARCH(1) series ;* ARCH(1) series labeled y* Next, estimate an AR(1) model without an intercept and produce the ACF and PACF.boxjenk(ar=1) y / residscor(partial=pacf,qstats,number=24,span=4,dfc=1) resids* Now, define sqresid as the squared residuals from the AR(1) model and construct the ACF* and PACF of these squared residuals. set sqresid = resids*residscor(partial=pacf,qstats,number=24,span=4,dfc=1) sqresidlinreg sqresid;* estimate an AR(1) model of the squared residuals# constant sqresid1compute trsq= %nobs*%rsquared;* Calculate TR2 and its significance levelcdf chisqr trsq 1linreg sqresid;* estimate an AR(4) model of the squared residuals.# constant sqresid1 to 4nonlin b1 a0 a1 ;* prepares for a non-linear estimation b1 a0 and a1frml regresid = y - b1*y1 ;* defines the residualfrml archvar = a0 + a1*regresid(t1)*2;* defines the variancefrml archlogl = (v=archvar(t), -0.5*(log(v)+regresid(t)*2/v) ;* defines the likelihoodboxjenk(ar=1) y;* estimate an AR(1) in order to obtain an initialcompute b1=%beta(1) ;* guess for the value of b1 and a0compute a0=%seesq, a1=.3;* the initial guesses of a0 and a1* Given the initial guesses and the definition of archlogl, the next line performs the non-* linear estimation of b1, a0, and a1.maximize(method=bhhh,recursive,iterations=75) archlogl 3 *6. The file QUARTERLY.XLS contains the quarterly values of the U.S. Producer Price Index (PPI) that were used in Section 4. The following program will estimate the various GARCH models of the logarithmic change in the PPI. cal 1960 1 4;* Sets the calendar dates to begin in 1960:Q1all 2002:1;* through 2002:Q1open data a:quarterly.xls;* Change this line if the data is not on drive a: data(format=xls,org=obs)* The next three lines form the inflation rate as the logarithmic change in the PPIdif ppi / dylog ppi / lydif ly / dly*The next line estimate the ARMA(1, |1,4|) model and stores the residuals in the series resids. The * following lines creates the correlations and Q-statistics of resids.boxjenk(define=eq1,constant,ar=1,ma=|1 , 4 |) dly / residscor(qstats,number=24,span=4) resids* Next, create the squared residuals. The correlations of the squared residuals and the Q-statistics are * obtained using set r2 = resids*2cor(qstats,span=4,number=12) r2* Estimate a linear regression in the form of (3.17) using four lags of the squared residuals lin r2 ; # constant r2 1 to 4* Now use eight lagslin(nopri) r2 ; # constant r21 to 8* To exclude lags 5 through 8 use:exc ; # r25 to 8* The following block of instructions can be used to estimate the ARMA(1,(1,4) model with * ARCH(4) errors. Additional details can be found in Chapter 1 of the Programming Manual.set u = 0.0nonlin b0 b1 b2 b3 a0 a1 a2 a3 a4 frml e = dly - b0 - b1*dly1 - b2*u1 - b3*u4frml var = a0 + a1*e1*2 + a2*e2*2 + a3*e3*2 + a4*e4*2frml L = (u = e), -.5*(log(var)+e(t)*2/var)boxjenk(noprint,constant,ar=1,ma=|1,4|) dlycompute b0=%beta(1), b1=%beta(2), b2 = %beta(3) , b3 = %beta(4)compute a0=%seesq, a1=.1 , a2 = .1 , a3 = .6 , a4 = .1maximize(iterations=75) L 6 * To constrain the coefficients in the ARCH(4) process to be 0.4, 0.3, 0.2 and 0.1, useset u = 0.0nonlin b0 b1 b2 b3 a0 a1frml e = dly - b0 - b1*dly1 - b2*u1 - b3*u4frml var = a0 + a1*(.4*e1*2 + .3*e2*2 + .2*e3*2 + .1*e4*2)frml L = (u = e), -.5*(log(var)+e(t)*2/var)boxjenk(noprint,constant,ar=1,ma=|1,4|) dlycompute b0=%beta(1), b1=%beta(2), b2 = %beta(3) , b3 = %beta(4)compute a0=%seesq, a1=.1 , a2 = .1 , a3 = .6 , a4 = .1maximize(iterations=75) L 6 * To estimate the ARMA(1,(1,4) with GARCH(1,1) errors, useset w = 0.0set u = 0.0nonlin b0 b1 b2 b3 a0 a1 a2frml e = dly - b0 - b1*dly1 - b2*u1 - b3*u4frml var = a0 + a1*e1*2 + a2*w1frml L = (u = e), (w = var), -.5*(log(var)+e(t)*2/var)boxjenk(noprint,constant,ar=1,ma=|1,4|) dlycompute b0=%beta(1), b1=%beta(2), b2 = %beta(3) , b3 = %beta(4)compute a0=%seesq, a1=.3 , a2 = .5maximize(iterations=75) L 6 *The residuals are contained in the series u. You can perform the appropriate diagnostics on this series. 7. The second series on the file ARCH.XLS contains 100 observations of a simulated ARCH-M process. The following programs will produce the indicated results.* The next three lines read in the 100 observations from the file. all 100open data a:/arch.xlsdata(format=xls,org=obs)table / y_m ;* The second series on the file is called y_m. TABLE produces the desired ;* summary statistics. * The following instruction produces the graph of the ARCH-M processgraph(header=Simulated ARCH-M Process) 1 ; # y_m* To estimate the MA(|3,6|) process and save the residuals as resids, use:boxjenk(constant,ma=|3,6|) y_m / resids*The correlations of resids (and the Q-statistics) are given bycor(partial=pacf,qstats,number=24,span=8) resids* Now form the squared residuals and obtain the autocorrelations usingset ressq = resids*resids ;* Form the squared residualscor(partial=pacf,qstats,number=24,span=4) ressq * Perform the Lagrange multiplier test for ARCH(4) errors by regressing the squared error on its own* four lags.linreg ressq; # constant ressq1 to 4*To obtain the F-statistic useexclude ; # ressq1 to 4* Alternatively, to obtain TR2 usecompute trsq = %nobs*%rsquared ;* Compute T*R2 and obtain the cumulative densitycdf chisqr trsq 4 ;* of trsq as chi-square with 4 degrees of freedom.set u = 0.0nonlin b0 b1 a0 a1frml var = a0 + a1*u1*2;* variance equationfrml e = y_m - b0 - b1*var(t);* mean equationfrml L = (u = e), -.5*(log(var)+e*2/var);* likelihood functioncompute b0=.8, b1=.6 , a0=.2, a1=.7;* initial guessesmaximize L 2 *8. Consider the ARCH(2) process: Et-1(et)2 = a0 + a1(et-1)2 + a2(et-2)2.A. Suppose that the residuals come from the model yt = a0+a1yt-1+et. Find the conditional and unconditional variance of yt in terms of the parameters a1, a0, a1, and a2.Answer: To find the conditional variance of yt, first note that the conditional mean of yt is: Et-1yt = Et-1(a0+a1yt-1+et) = a0+a1.yt-1. The conditional variance of yt is:Var(yt|yt-1, yt-2,.) = Et-1yt-Et-1(yt)2 = Et-1 (a0+a1yt-1+et) - (a0+a1yt)2 = Et-1(et)2 = Et-1a0 + a1(et-1)2 + a2(et-2)2 = a0 + a1(et-1)2 + a2(et-2)2To find the unconditional variance of yt find the particular solution for yt as: yt = a0/(1-a1) + et + a1et-1 + (a1)2et-2 + . Thus, the unconditional mean is: Eyt = a0/(1-a1). Using the solution for yt and Eyt, the unconditional variance of yt is: Var(yt) = E yt-E(yt)2 = Eet + a1et-1 + (a1)2et-2 + (a1)3et-3 + . 2= s2/1 - (a1)2Given that et = vt., it follows that (et)2 = v2t a0+a1(et-1)2 + a2(et-2)2). Since Eet = Evt = 0:E(et)2 = E (vt)2Ea0 + a1(et-1)2+a2(et-2)2 = a0+a1 E(et-1)2 + a2 E(et-2)2Since the unconditional variance of et is identical to that of et-1 and et-2, the unconditional variance is:E(et)2 = a0 /(1-a1-a2) so that the unconditional variance of yt is:Var(yt) =(a1)2iVar(et-i) = a0 /(1-a1-a2)(1-(a1)2).B. Suppose that yt is an ARCH-M process such that the level of yt is positively related to its own conditional variance. For simplicity,let: yt = a0 + a1(et-1)2 + a2(et-2)2 + et. Trace out the impulse response function of yt to an et shock. You may assume that the system has been in long-run equilibrium (et-2 = et-1 = 0) but now e1 = 1. Thus, the issue is to find the values of y1, y2, y3, and y4 given that e2 = e3 =.= 0.Answer: Iterating forward from the initial conditions: y1 = a0 + a1(e0)2 + a2(e-1)2 + e1 = a0 + a1.02 + a2.02 + 1 = a0+1y2 = a0 + a1(e1)2 + a2(e0)2 + e2 = a0 + a1 + a2.02 + 0 = a0+a1y3 = a0 + a1(e2)2 + a2(e1)2 + e3 = a0 + a1.02 + a2.12 + 0 = a0+a2y4 = a0 + a1(e3)2 + a2(e2)2 + e4 = a0 + a1.02 + a2.02 + 0 = a0y5 = a0 + a1(e4)2 + a2(e3)2 + e5 = a0 + a1.02 + a2.02 + 0 = a0,.Hence:dy1/de1 = 1; dy2/de1 = a1; dy3/de1 = a2; and dyi/de1 = 0 for i 3.C. Use your answer to Part B to explain the following result. A student estimated yt as an MA(2) process and found the residuals to be serially uncorrelated. A second student estimated the same series as the ARCH-M process: yt = a0 + a1(et-1)2 + a2(et-2)2 + et. Why might both estimates appear reasonable? How would you decide which is the better model?Answer: If a1 and a2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海水养殖亲子互动乐园创新创业项目商业计划书
- 坚果产业文化旅游创新创业项目商业计划书
- 智慧照明与节能管理系统创新创业项目商业计划书
- 城市绿地创新创业项目商业计划书
- 海水综合利用产业园区创新创业项目商业计划书
- 坚果跨境电商创新创业项目商业计划书
- 2025北京化工大学化工资源有效利用全国重点实验室招聘1人模拟试卷及答案详解(夺冠系列)
- 2025年浙江湖州吴兴区医疗卫生单位公开招聘编外工作人员30人考前自测高频考点模拟试题及答案详解(典优)
- 2024年销售团队季度目标与执行计划
- 后勤保障工作标准操作流程
- DZ∕T 0338.2-2020 固体矿产资源量估算规程 第2部分 几何法(正式版)
- 中医外科 第十三章泌尿男科疾病概论
- 结缔组织教学课件
- 2023年6月新高考天津卷英语试题真题及答案解析(精校打印版)
- 兽医未来职业规划
- 余华读书分享+名著导读《我们生活在巨大的差距里》
- 2023-2024 学年度第一学期第一次月考七年级数学试题
- 中级化学检验工理论考试题库
- 幼儿园红色小故事PPT:抗日小英雄王二小的故事
- YD-T 3775-2020 大数据 分布式事务数据库技术要求与测试方法
- 大学生心理健康教育(第二版)PPT全套完整教学课件
评论
0/150
提交评论