专题15+椭圆、双曲线、抛物线(易错起源)-2018年高考数学(理)备考黄金易错点+Word版含解析.doc_第1页
专题15+椭圆、双曲线、抛物线(易错起源)-2018年高考数学(理)备考黄金易错点+Word版含解析.doc_第2页
专题15+椭圆、双曲线、抛物线(易错起源)-2018年高考数学(理)备考黄金易错点+Word版含解析.doc_第3页
专题15+椭圆、双曲线、抛物线(易错起源)-2018年高考数学(理)备考黄金易错点+Word版含解析.doc_第4页
专题15+椭圆、双曲线、抛物线(易错起源)-2018年高考数学(理)备考黄金易错点+Word版含解析.doc_第5页
免费预览已结束,剩余7页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D10【答案】A2.【2017课标II,理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )A2 B C D【答案】A【解析】由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率故选A3.【2017浙江,2】椭圆的离心率是ABCD【答案】B【解析】,选B4.【2017天津,理5】已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A) (B)(C)(D)【答案】B【解析】由题意得 ,选B.5.【2017北京,理9】若双曲线的离心率为,则实数m=_.【答案】2【解析】 ,所以 ,解得 .6.【2017课标1,理】已知双曲线C:(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若MAN=60,则C的离心率为_.【答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且, ,而,所以,点到直线的距离,在中, ,代入计算得,即,由得,所以.7.【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则 。【答案】6【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故8.【2017课标3,理5】已知双曲线C: (a0,b0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为ABCD【答案】B【解析】双曲线C: (a0,b0)的渐近线方程为 ,椭圆中: ,椭圆,即双曲线的焦点为 ,据此可得双曲线中的方程组: ,解得: ,则双曲线 的方程为 .故选B.9.【2017山东,理14】在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为 .【答案】【解析】 ,因为 ,所以渐近线方程为.10.【2017课标1,理20】已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为1,证明:l过定点.【答案】(1).(2)见解析。(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ).则,得,不符合题设.从而可设l: ().将代入得由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时, ,欲使l: ,即,所以l过定点(2, )易错起源1、圆锥曲线的定义与标准方程例1、(1)ABC的两个顶点为A(4,0),B(4,0),ABC周长为18,则C点轨迹方程为()A.1(y0) B.1(y0)C.1(y0) D.1(y0)(2)在平面直角坐标系中,已知ABC的顶点A(4,0)和C(4,0),顶点B在椭圆1上,则_.答案(1)D(2)解析(1)ABC的两顶点A(4,0),B(4,0),周长为18,|AB|8,|BC|AC|10.108,点C到两个定点的距离之和等于定值,满足椭圆的定义,点C的轨迹是以A,B为焦点的椭圆,2a10,2c8,b3.椭圆的标准方程是1(y0)故选D.(2)由椭圆方程知其焦点坐标为(4,0)和(4,0),恰分别为ABC的顶点A和C的坐标,由椭圆定义知|BA|BC|2a10,在ABC中,由正弦定理可知,.【变式探究】(1)已知双曲线的一个焦点与抛物线x224y的焦点重合,其一条渐近线的倾斜角为30,则该双曲线的标准方程为()A.1B.1C.1D.1(2)抛物线y24x上的两点A,B到焦点的距离之和为8,则线段AB的中点到y轴的距离为_答案(1)B(2)3 (2)设A(x1,y1),B(x2,y2),由抛物线的定义及题意知,x11x218,x1x26.线段AB的中点到y轴的距离为3.【名师点睛】 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定【锦囊妙计,战胜自我】1圆锥曲线的定义(1)椭圆:|PF1|PF2|2a(2a|F1F2|);(2)双曲线:|PF1|PF2|2a(2ab0)的左,右焦点分别为F1,F2,焦距为2c.若直线y(xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_(2)已知双曲线1的左、右焦点分别为F1、F2,过F1作圆x2y2a2的切线分别交双曲线的左、右两支于点B、C,且|BC|CF2|,则双曲线的渐近线方程为()Ay3xBy2xCy(1)xDy(1)x答案(1)1(2)C解析(1)直线y(xc)过点F1(c,0),且倾斜角为60,所以MF1F260,从而MF2F130,所以MF1MF2.在RtMF1F2中,|MF1|c,|MF2|c,所以该椭圆的离心率e1.(2)由题意作出示意图,易得直线BC的斜率为,cosCF1F2,又由双曲线的定义及|BC|CF2|可得|CF1|CF2|BF1|2a,|BF2|BF1|2a|BF2|4a,故cosCF1F2b22ab2a20()22()201,故双曲线的渐近线方程为y(1)x.【变式探究】(1)设椭圆C:1(ab0)的左,右焦点分别为F1,F2,P是C上的点,PF2F1F2,PF1F230,则椭圆C的离心率为()A. B. C. D.(2)设双曲线1(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D,若D到直线BC的距离小于a,则该双曲线的渐近线斜率的取值范围是()A(1,0)(0,1) B(,1)(1,)C(,0)(0,) D(,) (,)答案(1)D(2)A解析(1)因为PF2F1F2,PF1F230,所以|PF2|2ctan30c,|PF1|c.又|PF1|PF2|c2a,所以,即椭圆C的离心率为.(2)由题作出图象如图所示由1可知A(a,0),F(c,0)易得B,C.kAB,kCD.kAC,kBD.lBD:y(xc),即yx,lCD:y(xc),即yx.xDc.点D到BC的距离为.aac,b4b2,01.00,b0)的渐近线方程为yx.注意离心率e与渐近线的斜率的关系易错起源3、直线与圆锥曲线例3、如图,在平面直角坐标系xOy中,已知椭圆1(ab0)的离心率为,且右焦点F到直线l:x的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若|PC|2|AB|,求直线AB的方程解(1)由题意,得且c3,解得a,c1,则b1,所以椭圆的标准方程为y21.(2)当ABx轴时,|AB|,又|CP|3,不合题意当AB与x轴不垂直时,设直线AB的方程为yk(x1),A(x1,y1),B(x2,y2),将直线AB的方程代入椭圆方程,得(12k2)x24k2x2(k21)0,则x1,2,C的坐标为,且|AB|.若k0,则线段AB的垂直平分线为y轴,与直线l平行,不合题意从而k0,故直线PC的方程为y,则P点的坐标为,从而|PC|.因为|PC|2|AB|,所以,解得k1.此时直线AB的方程为yx1或yx1.【变式探究】(1)设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围为()A, B2,2C1,1D4,4(2)设椭圆C:1与函数ytan的图象相交于A1,A2两点,若点P在椭圆C上,且直线PA2的斜率的取值范围是2,1,那么直线PA1斜率的取值范围是_答案(1)C(2),解析(1)由题意知抛物线的准线为x2,Q(2,0),显然,直线l的斜率存在,故设直线l的方程为yk(x2),由得k2x24(k22)x4k20,当k0时,x0,此时交点为(0,0),当k0时,0,即4(k22)216k40,解得1k0或0k1,综上,k的取值范围为1,1,故选C.(2)由题意,得A1,A2两点关于原点对称,设A1(x1,y1),A2(x1,y1),P(x0,y0),则有1,1,即y(4x),y(4x),两式相减整理,得.因为直线PA2的斜率的取值范围是2,1,所以21,所以21,解得.【名师点睛】解决直线与圆锥曲线问题的通法是联立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论