MINITAB培训_假设检验_方差_回归_DOE_MSA知识分享.ppt_第1页
MINITAB培训_假设检验_方差_回归_DOE_MSA知识分享.ppt_第2页
MINITAB培训_假设检验_方差_回归_DOE_MSA知识分享.ppt_第3页
MINITAB培训_假设检验_方差_回归_DOE_MSA知识分享.ppt_第4页
MINITAB培训_假设检验_方差_回归_DOE_MSA知识分享.ppt_第5页
免费预览已结束,剩余143页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 假设检验 编 SIXSIGMA培训 二 方差分析 三 质量工具 四 试验设计 假设检验 假设检验的理解 HypothesisTest 对总体参数分布做假设 根据样本 Sample 观测值运用统计技术分析方法检验这种假设是否正确 从而选择接受或拒绝假设的过程 假设 特定某总体是 ex 制造部男员工的平均身高是172cm 原假设 Ho NullHypothesis 肯定对立假设 H1orHa AlternativeHypothesis 否定原假设 某总体 N Sample 根据Sample的数据检验已设定的该总体的假设检验 原假设 Ho 设定 制造部男员工身高是172cm 设定对立假设 H1orHa 不是172cm 或 11 1 22 假设检验 假设检验的类别 11 2 22 假设检验Process Graph分析 Histogram BoxPlot 散点图等 致命因子选定 改善对象的明确化 假设检验 ZTest TTest Ftest ANOVA等 Graph分析 Subgroup 2 相关 回归分析 正规性检证 Y Chi squareTest 连续型 1SampleT Test 分散同质性检证 X Subgroup 2 ANOVA 2SampleT CriticalX選定 Yes No No Yes No Yes 分析 A 相关分析 Yes No 11 3 22 假设检验Process 假设检验的步骤a建立对立假设和原假设b选择显著性水平 一般为5 c选择检验方法d计算关于样本的Data的P值 e比较P值和显著性水平导出结论 P Value 在原假设设定为对的假设下 所观测事件的概率显著水平为5 的情况下 P 0 05时 接受原假设 拒绝对立假设 P 0 05时 接受对立假设 拒绝原假设 11 4 22 Theme选定 活动范围选定 CTQ明确化 对CTQ的GageR R 工程能力分析 Define Measure 假设检验Process 什么时候使用假设检验 Graph解释假设检验 实验计划 DOE 检验实验 管理计划 Analysis Improve Control 对影响Y变动的潜在性的候补因子 各个实施假设检验为了确认是否影响Y的因子而使用 变更某Process以后 为了检验变更前后统计性的改变了没有而使用 11 5 22 假设检验事例 1SampleZTest 1 SampleZ应用实例 加工一批零件 外园直径的目标值为5 5mm 过去标准差为0 016 从加工的零件中抽取35个 测得直径如下 11 6 22 问该批零件外园直径均值是否偏离目标值 假设检验事例 1SampleZTest 1 SampleZ应用实例 1 建立假设 H0 该批零件外园直径均值 5 50 H1 该批零件外园直径均值 5 50 2 确定信赖度为95 则 0 05 3 选择假设检验方法1SampleZ 应用MINITABL计算P 0 579 Stat BasicStatistics 1 SampleZ 4 比较P 0 05的大小 判定 接受H0 11 7 22 出现对话框后 Variables栏中选外园直径数值 SIGMA 栏中填0 016 总体 TESTMEAN栏中填5 50 目标均值 GRAPHS对话框可填可不填OPTIONS对话框 CONFIDENCELEVEL 95 0 置信度水平 ALTERNATIVE notequal 对立假设 One SampleZ sample实施结果 Testofmu 5 5vsmunot 5 5Theassumedsigma 0 016VariableNMeanStDevSEMeansample355 501430 023900 00270Variable95 0 CIZPsample 5 49613 5 50673 0 530 597 假设检验事例 1SampleTTest 1SampleTTest实例 Height66 0072 0073 5073 0069 0073 0072 0074 0072 0071 0074 0072 0070 0067 0071 0072 0069 0073 0074 0066 00 确认Height的平均个子是否70 单 不知道母体的标准偏差 原假设 平均个子 70 对立假设 平均个子 70 Testofmu 70vsmunot 70VariableNMeanStDevSEMeanHeight2071 1752 5610 573Variable95 0 CITPHeight 69 976 72 374 2 050 054 平均 71 175 标准偏差 2 561 平均的标准偏差 0 573 母平均的95 置信区间 69 976 72 374 p value 0 054 p value比0 05大 接受0假设 即 可以平均个子看作7070包含在置信区间里面 MinitabMenu Stat BasicStatistics 1SampleTTest 注意 在Option上各greaterthan lessthan notequal的含义是什么 11 8 22 目标均值 假设检验事例 2SampleTTest 2SampleTTest实例 例3 A B两种不同情况下测得某PCB焊点拉拔力数据如下 A 5 655 894 374 285 12 B 5 995 785 264 994 88 问两种条件下PCB的焊点拉拔力是否有显著区别 H0 A B H1 A BMinitabMenu Stat BasicStatistics 2SampleTTest 11 9 22 数据 标注 数据 假设检验事例 2SampleTTest 实施结果 P值比0 05大 接受H0 即2种条件下的PCB板焊点拔取力没有差异从平均值看B比A拔取力大总体均值的置信区间 1 278 0 642 Two sampleTforAvsBNMeanStDevSEMeanA55 0620 7290 33B55 3800 4870 22Difference muA muBEstimatefordifference 0 31895 CIfordifference 1 278 0 642 T Testofdifference 0 vsnot T Value 0 81P Value 0 448DF 6 11 10 22 假设检验事例 成对数据的假设检验 英语分数向上程序运营后 比较程序实施前和实施后的英语分数 检讨向上程序是否实际上很有用程序实施前 后的分数入以下时 检讨程序是否有利于英语分数向上 各10个随意抽出 Beforeafter7681605285875870918675778290646379858883 PairedT TestandCI before afterPairedTforbefore afterNMeanStDevSEMeanbefore1075 8011 643 68after1077 4012 183 85Difference10 1 606 382 0295 CIformeandifference 6 16 2 96 T Testofmeandifference 0 vsnot 0 T Value 0 79P Value 0 448 MinitabMenu Stat BasicStatistics PairedT PairedT CIMeanDifference2SampleT CIDifference PairedT 11 11 22 假设检验事例 1 Proportion DID事业部为了确认A厂家的6sigma的PJT成果 调查了300个sample 出现了15个不良品 A厂家交货部品的目标不良率为15 能不能看做目标达成了 MinitabMenu stat BasicStatistics 1 Proportion Click Testofp 0 15vspnot 0 15SampleXNSamplep95 0 CIP Value1153000 050 0 028251 0 081127 0 000 实行结果 11 12 22 假设检验事例 2 Proportion DID事业部为了比较A B两个line上发生的不良率 收集了Data 其结果ALine上1000个当中有75个不良 BLine上1500个当中发现了120个不良 能不能看作Line间不良率有差异 MinitabMenu stat BasicStatistics 2 Proportion TestandCIforTwoProportionsSampleXNSamplep17510000 075000212015000 080000Estimateforp 1 p 2 0 00595 CIforp 1 p 2 0 0263305 0 0163305 Testforp 1 p 2 0 vsnot 0 Z 0 46P Value 0 646 P value 0 646 64 6 P value值大 因此可以说0假设是对的 即 可以说A B两个line上所发生的不良率没有差异 11 13 22 假设检验事例 需同时检验多个样本均值有无差异时 需要用到方差分析 建立假设 H0 胶水A粘接力均值 胶水B粘接力均值 胶水C的粘接力均值H1 胶水A粘接力均值 胶水B粘接力均值 胶水C的粘接力均值确定显著水平 0 05选择假设检验类别 单变量方差分析Minitab计算P值 11 14 22 例 想了解三种不同胶水对元件粘接力的影响 分别测得不同胶水粘接力如下 问三种胶水粘接力均值有无差异 假设检验事例 11 15 22 Stat ANOVA One way Unstacked 注 Unstacked指不同条件的数据存储在不同列的状态 实施结果 One wayANOVA A B CAnalysisofVarianceSourceDFSSMSFPFactor20 1450 0730 260 778Error154 2730 285Total174 419Individual95 CIsForMeanBasedonPooledStDevLevelNMeanStDev A65 67670 5823 B65 54330 5558 C65 45830 4547 PooledStDev 0 53385 255 605 95 假设检验事例 2 Proportion 11 16 22 P 0 05 因此接受零假设H0 A B C胶水粘接力均值数据置信区间有重合部分 假设检验事例 2VARIANCES 11 17 22 对两个总体的分布状况进行比较 如对两个车床所加工出来的零件尺寸精度的比较 这时会用到F检验 例 两台车床加工一批零件 为了解两台车床加工精度方面有无差异 各抽取10个零件测得尺寸A数值如下 车床1 25 3 25 2 25 2 25 5 25 52 25 51 25 54 25 55 25 5 25 52 车床2 25 5 25 55 25 56 25 49 25 48 25 53 25 52 25 54 25 5 25 47 问 两台车床加工精度有无差异 步骤 H0 车床1加工的工件尺寸A的标准差 车床2加工的工件尺寸A的标准差H1 车床1加工的工件尺寸A的标准差 车床2加工的工件尺寸A的标准差确定 0 05选择假设检验类别F检验法 例用MINITAB计算PMinitabStat BasicStatistics 2Variances 假设检验事例 2 Proportion 11 18 22 假设检验事例 2 Proportion 11 19 22 TestforEqualVariancesLevel1CHE1Level2CHE2ConfLvl95 0000BonferroniconfidenceintervalsforstandarddeviationsLowerSigmaUpperNFactorLevels4 66E 027 13E 020 14358410CHE12 00E 023 06E 020 06166410CHE2F Test normaldistribution TestStatistic 5 422P Value 0 019Levene sTest anycontinuousdistribution TestStatistic 0 077P Value 0 785 接受零假设 两台车床加工精度没有差异 假设检验事例 2 Proportion 11 20 22 在需要同时比较多个方差的场合 需进行多样本方差检验 四台设备同时加工一种工件 为了解4台设备的精度有无差异 每台设备抽样10PCS测得尺寸如下 略 问四台设备精度是否有差异 H0 H1 MINTAB工作表数据 Stat ANOVA TestforEqualVariances 假设检验事例 2 Proportion 11 21 22 ResponseSIZEFactorsEQUIPConfLvl95 0000BonferroniconfidenceintervalsforstandarddeviationsLowerSigmaUpperNFactorLevels1 843682 945816 514710A3 291345 2588511 630110B3 133515 0066611 072310C2 764544 417149 768610DBartlett sTest normaldistribution TestStatistic 3 055P Value 0 383Levene sTest anycontinuousdistribution TestStatistic 0 295P Value 0 829 假设检验事例 2 Proportion 11 22 22 根据上图结果Bartlett检验法和Levene检验法得出一致结论 P值大于0 05 所以认为四台车床加工的工件精度没有显著差异 有时会存在Bartlett检验法和Levene检验法得出的结论不一致的问题 这时可检验数据的正态性 如为正态分布数据 则以Bartlett检验法为结论 如为非正态分布 则以Levene检验法为准 2 3统计技术方法 2 3 1方差分析2 3 2回归分析2 3 3试验设计 2 3 1方差分析 一 几个概念二 单因子方差分析三 重复数不等的情况 一 几个概念 在试验中改变状态的因素称为因子 常用大写英文字母A B C 等表示 因子在试验中所处的状态称为因子的水平 用代表因子的字母加下标表示 记为A1 A2 Ak 试验中所考察的指标 可以是质量特性也可以是产量特性或其它 用Y表示 Y是一个随机变量 单因子试验 若试验中所考察的因子只有一个 例2 1 1 现有甲 乙 丙三个工厂生产同一种零件 为了了解不同工厂的零件的强度有无明显的差异 现分别从每一个工厂随机抽取四个零件测定其强度 数据如表所示 试问三个工厂的零件的平均强度是否相同 三个工厂的零件强度 在这一例子中 考察一个因子 因子A 工厂该因子有三个水平 甲 乙 丙试验指标是 零件强度 这是一个单因子试验的问题 每一水平下的试验结果构成一个总体 现在需要比较三个总体均值是否一致 如果每一个总体的分布都是正态分布 并且各个总体的方差相等 那么比较各个总体均值是否一致的问题可以用方差分析方法来解决 二 单因子方差分析 假定因子A有r个水平 在Ai水平下指标服从正态分布 其均值为 方差为 i 1 2 r 每一水平下的指标全体便构成一个总体 共有r个总体 这时比较各个总体的问题就变成比较各个总体的均值是否相同的问题了 即要检验如下假设是否为真 当不真时 表示不同水平下的指标的均值有显著差异 此时称因子A是显著的 否则称因子A不显著 检验这一假设的分析方法便是方差分析 方差分析的三个基本假定 1 在水平下 指标服从正态分布 2 在不同水平下 各方差相等 3 各数据相互独立 设在一个试验中只考察一个因子A 它有r个水平 在每一水平下进行m次重复试验 其结果用表示 i 1 2 r 常常把数据列成如下表格形式 单因子试验数据表 记第i水平下的数据均值为 总均值为 此时共有n rm个数据 这n个数据不全相同 它们的波动 差异 可以用总离差平方和ST去表示 记第i水平下的数据和为Ti 引起数据波动 差异 的原因不外如下两个 一是由于因子A的水平不同 当假设H0不真时 各个水平下指标的均值不同 这必然会使试验结果不同 我们可以用组间离差平方和来表示 也称因子A的离差平方和 这里乘以m是因为每一水平下进行了m次试验 二是由于存在随机误差 即使在同一水平下获得的数据间也有差异 这是除了因子A的水平外的一切原因引起的 我们将它们归结为随机误差 可以用组内离差平方和表示 Se 也称为误差的离差平方和 可以证明有如下平方和分解式 ST SA Se的自由度分别用 表示 它们也有分解式 其中 因子或误差的离差平方和与相应的自由度之比称为因子或误差的均方和 并分别记为 两者的比记为 当时认为在显著性水平上因子A是显著的 其中是自由度为的F分布的1 分位数 单因子方差分析表 各个离差平方和的计算 其中是第i个水平下的数据和 T表示所有n rm个数据的总和 进行方差分析的步骤如下 1 计算因子A的每一水平下数据的和T1 T2 Tr及总和T 2 计算各类数据的平方和 3 依次计算ST SA Se 4 填写方差分析表 5 对于给定的显著性水平 将求得的F值与F分布表中的临界值比较 当时认为因子A是显著的 否则认为因子A是不显著的 对上例的分析 1 计算各类和 每一水平下的数据和为 数据的总和为T 1200 2 计算各类平方和 原始数据的平方和为 每一水平下数据和的平方和为 3 计算各离差平方和 ST 121492 12002 12 1492 fT 3 4 1 11SA 485216 4 12002 12 1304 fA 3 1 2Se 1492 1304 188 fe 11 2 9 4 列方差分析表 例2 1 1 的方差分析表 5 如果给定 0 05 从F分布表查得 由于F 4 26 所以在 0 05水平上结论是因子A是显著的 这表明不同的工厂生产的零件强度有明显的差异 当因子A是显著时 我们还可以给出每一水平下指标均值的估计 以便找出最好的水平 在单因子试验的场合 第i个水平指标均值的估计为 在本例中 三个工厂生产的零件的平均强度的的估计分别为 由此可见 乙厂生产的零件的强度的均值最大 如果我们需要强度大的零件 那么购买乙厂的为好 而从工厂来讲 甲厂与丙厂应该设法提高零件的强度 误差方差的估计 这里方差的估计是MSe 在本例中 的估计是20 9 的估计是 例2 1 2 略 见教材P92 三 重复数不等的情况 若在每一水平下重复试验次数不同 假定在Ai水平下进行次试验 那么进行方差分析的步骤仍然同上 只是在计算中有两个改动 例2 1 3某型号化油器原中小喉管的结构使油耗较大 为节约能源 设想了两种改进方案以降低油耗 油耗的多少用比油耗进行度量 现在对用各种结构的中小喉管制造的化油器分别测定其比油耗 数据如表所列 试问中小喉管的结构 记为因子A 对平均比油油耗的影响是否显著 这里假定每一种结构下的油耗服从等方差的正态分布 例2 1 3 的试验结果 为简化计算 这里一切数据均减去220 不影响F比的计算及最后分析因子的显著性 1 各水平下的重复试验次数及数据和分别为 A1 m1 8 T1 69 5A2 m2 4 T2 6 0A3 m3 4 T3 15 4 总的试验次数n 16 数据的总和为T 90 9 2 计算各类平方和 3 计算各离差平方和 ST 757 41 516 43 240 98 fT 16 1 15SA 672 07 516 43 155 64 fA 3 1 2Se 240 98 155 64 85 34 fe 15 2 13 4 列方差分析表 例2 1 3 方差分析表 5 如果给定 0 05 从F分布表查得 由于F 3 81 所以在 0 05水平上我们的结论是因子A是显著的 这表明不同的中小喉管结构生产的化油器的平均比油耗有明显的差异 我们还可以给出不同结构生产的化油器的平均比油耗的估计 这里加上220是因为在原数据中减去了220的缘故 由此可见 从比油耗的角度看 两种改进结构都比原来的好 特别是改进结构1 在本例中误差方差的估计为6 56 标准差的估计为2 56 2 3 2回归分析 例2 2 1合金的强度y与合金中的碳含量x有关 为了生产出强度满足顾客需要的合金 在冶炼时应该如何控制碳含量 如果在冶炼过程中通过化验得到了碳含量 能否预测合金的强度 这时需要研究两个变量间的关系 首先是收集数据 xi yi i 1 2 n 现从生产中收集到表2 2 1所示的数据 表2 2 1数据表 一 散布图 例2 2 1 的散布图 二 相关系数 1 相关系数的定义 在散布图上n个点在一条直线附近 但又不全在一条直线上 称为两个变量有线性相关关系 可以用相关系数r去描述它们线性关系的密切程度 其中 性质 表示n个点在一条直线上 这时两个变量间完全线性相关 r 0表示当x增加时y也增大 称为正相关 r 0表示当x增加时y减小 称为负相关 r 0表示两个变量间没有线性相关关系 但并不排斥两者间有其它函数关系 2 相关系数的检验 若记两个变量x和y理论的相关系数为 其中x为一般变量 y服从等方差的正态分布 则 对给定的显著性水平 当可以认为两者间存在一定的线性相关关系 可以从表2 2 2中查出 其中n为样本量 3 具体计算 求上例的相关系数 步骤如下 1 计算变量x与y的数据和 Tx 1 90 Ty 590 5 2 计算各变量的平方和与乘积和 3 计算Lxx Lyy Lxy Lxy 95 9250 1 90 590 5 12 2 4292 Lxx 0 3194 1 902 12 0 0186 Lyy 29392 75 590 52 12 335 2292 4 计算r 在 0 05时 由于r 0 576 说明两个变量间有 正 线性相关关系 四 一元线性回归方程 1 一元线性回归方程的求法 一元线性回归方程的表达式为 其中a与b使下列离差平方和达到最小 通过微分学原理 可知 称这种估计为最小二乘估计 b称为回归系数 a一般称为常数项 求一元线性回归方程的步骤如下 1 计算变量x与y的数据和Tx Ty 2 计算各变量的平方和与乘积和 3 计算Lxx Lxy 4 求出b与a 利用前面的数据 可得 b 2 4392 0 0186 130 6022 a 590 5 12 130 6022 1 90 12 28 5297 5 写出回归方程 画出的回归直线一定通过 0 a 与两点 上例 或 2 回归方程的显著性检验 有两种方法 一是用上述的相关系数 二是用方差分析方法 为便于推广到多元线性回归的场合 将总的离差平方和分解成两个部分 回归平方和与离差平方和 总的离差平方和 回归平方和 离差平方和 且有ST SR SE 其中 它们的自由度分别为 fT n 1 fR 1 fE n 2 fT fR 计算F比 对给定的显著性水平 当时认为回归方程是显著的 即回归方程是有意义的 一般也列成方差分析表 对上面的例子 作方差分析的步骤如下 根据前面的计算 1 计算各类平方和 ST Lyy 335 2292 fT 12 1 11SR bLxy 130 6022 2 4292 317 2589 fR 1SE 335 2292 317 2589 17 9703 fE 11 1 10 2 列方差分析表 例2 2 1 的方差分析表 对给定的显著性水平 0 05 有 F0 95 1 10 4 96 由于F 4 96 所以在0 05水平上认为回归方程是显著的 有意义的 3 利用回归方程进行预测 对给定的 y的预测值为 概率为的y的预测区间是 其中 当n较大 与相差不大 那么可给出近似的预测区间 此时 进行预测的步骤如下 1 对给出的x0求预测值 上例 设x0 0 16 则 2 求的估计 上例有 3 求 上例n 12 如果求概率为95 的预测区间 那么t0 975 10 2 228 所以 4 写出预测区间 上例为 49 43 3 11 49 43 3 11 46 32 52 54 由于u0 975 1 96 故概率为0 95的近似的预测区间为 所求区间 49 43 2 63 49 43 2 63 46 80 52 06 相差较大的原因总n较小 四 可化为一元线性回归的曲线回归 在两个重复的散布图上 n个点的散布不一定都在一条直线附近波动 有时可能在某条曲线附近波动 这时以建立曲线回方程为好 1 确定曲线回归方程形式 2 曲线回归方程中参数的估计 通过适当的变换 化为一元线性回归的形式 再利用一元线性回归中的最小二乘估计方法获得 回归曲线的形式 1 a 0 b 0 2 b 0 3 b 0 4 b 0 3 曲线回归方程的比较 常用的比较准则 1 要求相关指数R大 其平方也称为决定系数 它被定义为 2 要求剩余标准差s小 它被定义为 2 3 3试验设计 一 试验设计的基本概念与正交表 一 试验设计 多因素试验遇到的最大困难是试验次数太多 若十个因素对产品质量有影响 每个因素取两个不同状态进行比较 有210 1024 如果每个因素取三个不同状态310 59049个不同的试验条件 选择部分条件进行试验 再通过数据分析来寻找好的条件 这便是试验设计问题 通过少量的试验获得较多的信息 达到试验的目的 利用正交表进行试验设计的方法就是正交试验设计 二 正交表 L 表示正交表 9 是表的行数 在试验中表示试验的条件数 4 是列数 在试验中表示可以安排的因子的最多个数 3 是表的主体只有三个不同数字 在试验中表示每一因子可以取的水平数 正交表具有正交性 这是指它有如下两个特点 1 每列中每个数字重复次数相同 在表L9 34 中 每列有3个不同数字 1 2 3 每一个出现3次 2 将任意两列的同行数字看成一个数对 那么一切可能数对重复次数相同 在表L9 34 中 任意两列有9种可能的数对 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 每一对出现一次 常用的正交表有两大类 1 一类正交表的行数n 列数p 水平数q间有如下关系 n qk k 2 3 4 p n 1 q 1 如 L4 23 L8 27 L16 215 L32 231 等 可以考察因子间的交互作用 2 另一类正交表的行数 列数 水平数之间不满足上述的两个关系 如 L12 211 L18 37 L20 219 L36 313 等 这类正交表不能用来考察因子间的交互作用 常用正交表见附录 二 无交互作用的正交设计与数据分析 试验设计一般有四个步骤 1 试验设计2 进行试验获得试验结果3 数据分析4 验证试验 例2 3 1磁鼓电机是彩色录像机磁鼓组件的关键部件之一 按质量要求其输出力矩应大于210g cm 某生产厂过去这项指标的合格率较低 从而希望通过试验找出好的条件 以提高磁鼓电机的输出力矩 一 试验的设计 在安排试验时 一般应考虑如下几步 1 明确试验目的 2 明确试验指标 3 确定因子与水平 4 选用合适的正交表 进行表头设计 列出试验计划 在本例中 试验目的 提高磁鼓电机的输出力矩 试验指标 输出力矩 确定因子与水平 经分析影响输出力矩的可能因子及水平见表2 3 2 表2 3 2因子水平表 选表 首先根据因子的水平数 找出一类正交表 再根据因子的个数确定具体的表 把因子放到表的列上去 称为表头设计把放因子的列中的数字改为因子的真实水平 便成为一张试验计划表 每一行便是一个试验条件 在正交设计中n个试验条件是一起给出的的 称为 整体设计 并且均匀分布在试验空间中 试验计划与试验结果 9个试验点的分布 二 进行试验 并记录试验结果 在进行试验时 要注意几点 1 除了所考察的因子外的其它条件 尽可能保持相同 2 试验次序最好要随机化 3 必要时可以设置区组因子 三 数据分析 1 数据的直观分析 1 寻找最好的试验条件 在A1水平下进行了三次试验 1 2 3 而在这三次试验中因子B的三个水平各进行了一次试验 因子C的三个水平也各进行了一次试验 在A2水平下进行了三次试验 4 5 6 在这三次试验中因子B与C的三个水平各进行了一次试验 在A3水平下进行了三次试验 7 8 9 在这三次试验中因子B与C的三个水平各进行了一次试验 将全部试验分成三个组 那么这三组数据间的差异就反映了因子A的三个水平的差异 为此计算各组数据的和与平均 T1 y1 y2 y3 160 215 180 555 T1 3 185 T2 y4 y5 y6 168 236 190 594 T2 3 198 T3 y7 y8 y9 157 205 140 502 T3 3 167 3 同理 对因子B与C将数据分成三组分别比较 所有计算列在下面的计算表中 例2 3 1直观分析计算表 2 各因子对指标影响程度大小的分析极差的大小反映了因子水平改变时对试验结果的影响大小 这里因子的极差是指各水平平均值的最大值与最小值之差 譬如对因子A来讲 RA 198 167 3 30 7 其它的结果也列在上表中 从三个因子的极差可知因子B的影响最大 其次是因子A 而因子C的影响最小 3 各因子不同水平对指标的影响图 从图上可以明显地看出每一因子的最好水平A2 B2 C3 也可以看出每个因子对指标影响的大小RB RA RC 图2 3 2因子各水平对输出力矩的影响 由于正交表的特点 使试验条件均匀分布在试验空间中 因此使数据间具有整齐可比性 上述的直观分析可以进行 但是极差大到什么程度可以认为水平的差异确实是有影响的呢 2 数据的方差分析 要把引起数据波动的原因进行分解 数据的波动可以用离差平方和来表示 正交表中第j列的离差平方和的计算公式 其中Tij为第j列第i水平的数据和 T为数据总和 n为正交表的行数 q为该列的水平数 该列表头是哪个因子 则该Sj即为该因子的离差平方和 譬如SA S1 正交表总的离差平方和为 在这里有 例2 3 1 的方差分析计算表 第4列上没有放因子 称为空白列 S4仅反映由误差造成的数据波动 称为误差平方和 Se S4 利用可以验证平方和的计算是否正确 例2 3 1 的方差分析表 因子A与B在显著性0 10与0 05上都是显著的 而因子C不显著 3 最佳条件的选择 对显著因子应该取最好的水平 对不显著因子的水平可以任意选取 在实际中通常从降低成本 操作方便等角度加以选择 上面的例子中对因子A与B应该选择A2B2 因子C可以任选 譬如为节约材料可选择C1 4 贡献率分析方法 当试验指标不服从正态分布时 进行方差分析的依据就不够充足 此时可通过比较各因子的 贡献率 来衡量因子作用的大小 由于S因中除因子的效应外 还包含误差 从而称S因 f因Ve为因子的纯离差平方和 将因子的纯离差平方和与ST的比称为因子的贡献率 四 验证试验 对A2B2C1进行三次试验 结果为 234 240 220 平均值为231 3此结果是满意的 三 有交互作用的正交设计与数据分析 例2 3 2为提高某种农药的收率 需要进行试验 一 试验的设计 明确试验目的 明确试验指标 确定试验中所考虑的因子与水平 并确定可能存在并要考察的交互作用 选用合适的正交表 在本例中 试验目的 提高农药的收率 试验指标 收率 确定因子与水平以及所要考察的交互作用 因子水平表 还要考察因子A与B交互作用 选表 首先根据因子的水平数 找出一类正交表再根据因子的个数及交互作用个数确定具体的表 把因子放到表的列上去 但是要先放有交互作用的两个因子 并利用交互作用表 标出交互作用所在列 以便于今后的数据分析 把放因子的列中的数字改为因子的真实水平 便成为一张试验计划表 L8 27 的交互作用表 试验计划 二 数据分析 1 数据的方差分析 在二水平正交表中一列的离差平方和有一个简单的计算公式 其中T1j T2j分别是第j列一水平与二水平数据的和 n是正交表的行数 例2 3 2 的计算表 例2 3 2 的方差分析表 其中 SA S1 SB S2 SC S4 SD S7 SA B S3 Se S5 S6 fA fB fC fD fA B 1 fe 2 A B的搭配表 2 最佳条件的选择 故最佳条件是 A2B1C2 A2B1的搭配为好 C取2水平为好 三 避免混杂现象 表头设计的一个原则 选择正交表时必须满足下面一个条件 所考察的因子与交互作用自由度之和 n 1 其中n是正交表的行数 不过在存在交互作用的场合 这一条件满足时还不一定能用来安排试验 所以这是一个必要条件 例2 3 3给出下列试验的表头设计 1 A B C D为二水平因子 同时考察交互作用A B A C 2 A B C D为二水平因子 同时考察交互作用A B C D 3 A B C D E为三水平因子 同时考察交互作用A B 它们分别要用L8 27 L16 215 L27 313 测量系统分析 MSA 测量系统基本要求 准确性Accuracy 精确性Precision 测量系统基本要求 线性性 Linearity 偏度 Bias 稳定性 Stability 重复性 Repeatability 再现性 Reproducibility 准确性和精确性 准确性描述了测量值和真实值之间的差异精确性描述了使用同一工具重复测量相同部件时存在的差异 偏倚 Bias 测量系统误差的类型 观测到的平均观测值和基准值之间的差异 稳定性 Stability 测量系统误差的类型 随着时间推移系统测量的准确性 线性 Linearity 测量系统误差的类型 部件的大小如何影响测量系统的准确性 重复性 Repeatability 由同一操作者对同一部件用同一测量仪器的多次测量 测量系统误差的类型 再现性 Reproducibility 由不同操作者对同一部件用同一测量仪器的测量 测量系统误差的类型 测量重复性和再现性GageR R repeatabilityandreproducibility 适用于所有列入控制计划的测量系统计量型 Variable 计数型 Attribute 测量系统分析 测量重复性和再现性可接受标准低于10 误差 测量系统可接受10 至30 误差 考虑重要性 量具成本 维修成本可能接受大于30 的误差 需改 测量系统分析 Minitab中有关MSA部分 测量趋势图测量线性和偏倚分析测量重复性和再现性分析 交叉 测量重复性和再现性分析 嵌套 属性协议分析 测量重复性和再现性研究 GageR RStudy可对交叉式数据 crossed 和嵌套式数据 nested 进行精确性分析 在Minitab如何组织这两种数据的 数据组织方式的差异 相同 不同 交叉式数据 嵌套式数据 交叉式数据分析 交叉式数据分析分为均值极差法 Xbar R 和方差法 ANOVA 分析均值极差法不考虑操作者与测量对象之间的交互作用均值极差法将总测量变差分为三类 部件 部件 重复性和再现性方差法将总测量变差分为四类 部件 部件 重复性 操作者 操作者 部件交互作用 交叉式数据分析 均值极差法 打开Minitab 从菜单选择File OpenWorksheet 打开工作表GAGEAIAG MTW从菜单选择Stat QualityTools GageStudy GageR RStud

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论