



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3充要条件学习目标1.理解充要条件的意义.2.会判断、证明充要条件.3.通过学习,明白对充要条件的判定应该归结为判断命题的真假.知识点一充要条件一般地,如果既有pq,又有qp 就记作pq.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果pq,那么p与q互为充要条件.思考(1)若p是q的充要条件,则命题p和q是两个相互等价的命题.这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?答案(1)正确.若p是q的充要条件,则pq,即p等价于q,故此说法正确.(2)p是q的充要条件说明p是条件,q是结论.p的充要条件是q说明q是条件,p是结论.知识点二常见的四种条件与命题真假的关系如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种情形:原命题逆命题p与q的关系真真p是q的充要条件q是p的充要条件真假p是q的充分不必要条件q是p的必要不充分条件假真p是q的必要不充分条件q是p的充分不必要条件假假p是q的既不充分也不必要条件q是p的既不充分也不必要条件知识点三从集合的角度判断充分条件、必要条件和充要条件若ab,则p是q的充分条件,若ab,则p是q的充分不必要条件若ba,则p是q的必要条件,若ba,则p是q的必要不充分条件若ab,则p,q互为充要条件若ab且ba,则p既不是q的充分条件,也不是q的必要条件其中p:ax|p(x)成立,q:bx|q(x)成立.题型一充要条件的判断例1(1)“x1”是“x22x10”的()a.充要条件b.充分而不必要条件c.必要而不充分条件d.既不充分也不必要条件答案a解析解x22x10得x1,所以“x1”是“x22x10”的充要条件.(2)判断下列各题中,p是否为q的充要条件?在abc中,p:ab,q:sin asin b;若a,br,p:a2b20,q:ab0;p:|x|3,q:x29.解在abc中,显然有absin asin b,所以p是q的充要条件.若a2b20,则ab0,即pq;若ab0,则a2b20,即qp,故pq,所以p是q的充要条件.由于p:|x|3q:x29,所以p是q的充要条件.反思与感悟判断p是q的充分必要条件的两种思路(1)命题角度:判断p是q的充分必要条件,主要是判断pq及qp这两个命题是否成立.若pq成立,则p是q的充分条件,同时q是p的必要条件;若qp成立,则p是q的必要条件,同时q是p的充分条件;若二者都成立,则p与q互为充要条件.(2)集合角度:关于充分条件、必要条件、充要条件,当不容易判断pq及qp的真假时,也可以从集合角度去判断,结合集合中“小集合大集合”的关系来理解,这对解决与逻辑有关的问题是大有益处的.跟踪训练1(1)a,b中至少有一个不为零的充要条件是()a.ab0 b.ab0c.a2b20 d.a2b20答案d解析a2b20,则a、b不同时为零;a,b中至少有一个不为零,则a2b20.(2)“函数yx22xa没有零点”的充要条件是_.答案a1解析函数没有零点,即方程x22xa0无实根,所以有44a0,解得a1.反之,若a1,则0,方程x22xa0无实根,即函数没有零点.故“函数yx22xa没有零点”的充要条件是a1.题型二充要条件的证明例2求证:方程x2(2k1)xk20的两个根均大于1的充要条件是k2.证明必要性:若方程x2(2k1)xk20有两个大于1的根,不妨设两个根为x1,x2,则即解得k2.充分性:当k0.设方程x2(2k1)xk20的两个根为x1,x2.则(x11)(x21)x1x2(x1x2)1k22k11k(k2)0.又(x11)(x21)(x1x2)2(2k1)22k10,x110,x210.x11,x21.综上可知,方程x2(2k1)xk20有两个大于1的根的充要条件为k0,yy,则p是q的_条件.答案充要解析当x0,yy且成立,当xy且时,得所以p是q的充要条件.1.充要条件的判断有三种方法:定义法、等价命题法、集合法.2.充要条件的证明与探求(1)充要条件的证明分充分性的证明和必要性的证明.在证明时要注意两种叙述方式的区别:p是q的充要条件,则由pq证的是充分性,由qp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康教育培训知识题课件
- 俱乐部饮水安全培训计划课件
- 集团档案组管理办法
- 建行岗位考试题库及答案
- 2025年病理学乳腺癌组织病理学特征分析答案及解析
- 税务违法检举管理办法
- 企业安全管理培训目的课件
- 食品安全风险评估模型-洞察及研究
- 出行安全课件
- 出行安全培训课件
- 2025-2026学年苏教版小学数学五年级上册教学计划及进度表
- GB/T 18705-2002装饰用焊接不锈钢管
- 苏教版数学六年级上册《全册课件》教学精品ppt
- 数控机床概述课件
- 电路板维修培训教材PPT模板
- “国培计划”优秀工作案例推荐表——“八张清单”撬动送教下乡的兴奋点
- 《色彩基础知识》PPT课件(详解)
- 《综合布线系统培训》PPT课件.ppt
- 交流电源控制和保护
- 中医痹症ppt课件
- 女儿墙安装电动吊篮相关安全计算
评论
0/150
提交评论