




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1双曲线及其标准方程学习目标1.掌握双曲线的定义.2.掌握用定义法和待定系数法求双曲线的标准方程.3.理解双曲线标准方程的推导过程,并能运用标准方程解决相关问题.知识点一双曲线的定义把平面内到两个定点f1,f2的距离的差的绝对值等于常数(大于零且小于|f1f2|)的点的轨迹叫作双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.知识点二双曲线的标准方程焦点在x轴上焦点在y轴上标准方程1(a0,b0)1(a0,b0)焦点f1(c,0),f2(c,0)f1(0,c),f2(0,c)焦距|f1f2|2ca、b、c的关系c2a2b2思考(1)双曲线定义中,将“小于|f1f2|”改为“等于|f1f2|”或“大于|f1f2|”的常数,其他条件不变,点的轨迹是什么?(2)确定双曲线的标准方程需要知道哪些量?答案(1)当距离之差等于|f1f2|时,动点的轨迹就是两条射线,端点分别是f1、f2,当距离之差大于|f1f2|时,动点的轨迹不存在.(2)a,b的值及焦点所在的位置.知识点三双曲线与椭圆的比较双曲线、椭圆的标准方程及它们之间的区别与联系:椭圆双曲线定义|mf1|mf2|2a(2a|f1f2|)|mf1|mf2|2a(02ab0)1(a0,b0)焦点在y轴上1(ab0)1(a0,b0)题型一求双曲线的标准方程例1根据下列条件,求双曲线的标准方程.(1)经过点p(3,),q(,5);(2)c,经过点(5,2),焦点在x轴上.解(1)方法一若焦点在x轴上,设双曲线的方程为1(a0,b0),由于点p(3,)和q(,5)在双曲线上,所以解得 (舍去).若焦点在y轴上,设双曲线的方程为1(a0,b0),将p、q两点坐标代入可得解得所以双曲线的标准方程为1.综上,双曲线的标准方程为1.方法二设双曲线方程为1(mn0,b0).则有解得所求双曲线的标准方程为y21.方法二焦点在x轴上,c,设所求双曲线方程为1(其中06).双曲线经过点(5,2),1,5或30(舍去).所求双曲线的标准方程是y21.反思与感悟求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b的值.若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx2ny21(mn0,b0),将点(4,2)和(2,2)代入方程得解得a28,b24,所以双曲线的标准方程为1.题型二双曲线定义的应用例2若f1,f2是双曲线1的两个焦点.(1)若双曲线上一点m到它的一个焦点的距离等于16,求点m到另一个焦点的距离;(2)如图,若p是双曲线左支上的点,且|pf1|pf2|32,试求f1pf2的面积.解双曲线的标准方程为1,故a3,b4,c5.(1)由双曲线的定义得|mf1|mf2|2a6,又双曲线上一点m到它的一个焦点的距离等于16,假设点m到另一个焦点的距离等于x,则|16x|6,解得x10或x22.故点m到另一个焦点的距离为10或22.(2)将|pf2|pf1|2a6两边平方得|pf1|2|pf2|22|pf1|pf2|36,|pf1|2|pf2|2362|pf1|pf2|36232100.在f1pf2中,由余弦定理得cosf1pf20,且f1pf2(0,180),f1pf290,|pf1|pf2|3216.反思与感悟(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据|pf1|pf2|2a求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于ca).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件|pf1|pf2|2a的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.跟踪训练2已知双曲线1的左、右焦点分别是f1、f2,若双曲线上一点p使得f1pf260,求f1pf2的面积.解由1得,a3,b4,c5.由双曲线的定义和余弦定理得|pf1|pf2|6,|f1f2|2|pf1|2|pf2|22|pf1|pf2|cos60,所以102(|pf1|pf2|)2|pf1|pf2|,所以|pf1|pf2|64,|pf1|pf2|sinf1pf26416.题型三与双曲线有关的轨迹问题例3如图,在abc中,已知|ab|4,且三个内角a,b,c满足2sinasinc2sinb,建立适当的坐标系,求顶点c的轨迹方程.解以ab边所在的直线为x轴,ab的垂直平分线为y轴,建立平面直角坐标系如图所示,则a(2,0),b(2,0).由正弦定理得sina,sinb,sinc(r为abc的外接圆半径).2sinasinc2sinb,2|bc|ab|2|ac|,从而有|ac|bc|ab|2).反思与感悟(1)求解与双曲线有关的点的轨迹问题,常见的方法有两种:列出等量关系,化简得到方程;寻找几何关系,由双曲线的定义,得出对应的方程.(2)求解双曲线的轨迹问题时要特别注意:双曲线的焦点所在的坐标轴;检验所求的轨迹对应的是双曲线的一支还是两支.跟踪训练3如图所示,已知定圆f1:(x5)2y21,定圆f2:(x5)2y242,动圆m与定圆f1,f2都外切,求动圆圆心m的轨迹方程.解圆f1:(x5)2y21,圆心f1(5,0),半径r11;圆f2:(x5)2y242,圆心f2(5,0),半径r24.设动圆m的半径为r,则有|mf1|r1,|mf2|r4,|mf2|mf1|310|f1f2|.点m的轨迹是以f1,f2为焦点的双曲线的左支,且a,c5,于是b2c2a2.动圆圆心m的轨迹方程为1(x).1.已知f1(3,3),f2(3,3),动点p满足|pf1|pf2|4,则p点的轨迹是()a.双曲线b.双曲线的一支c.不存在d.一条射线答案b解析因为|pf1|pf2|4,且4|f1f2|,由双曲线定义知,p点的轨迹是双曲线的一支.2.椭圆1和双曲线1有相同的焦点,则实数n的值是()a.5b.3c.5d.9答案b解析由题意知,34n2n216,2n218,n29.n3.3.双曲线1的焦距为()a.3b.4c.3d.4答案d解析由标准方程得a210,b22,所以c2a2b212,c2,所以焦距2c4.4.已知双曲线中a5,c7,则该双曲线的标准方程为_.答案1或1解析当焦点在x轴上时,方程为1,当焦点在y轴上时,方程为1.5.p是双曲线x2y216的左支上一点,f1,f2分别是左、右焦点,则|pf1|pf2|_.答案8解析将x2y216化为标准形式为1,所以a216,2a8,因为p点在双曲线左支上,所以|pf1|pf2|8.1.双曲线定义中|pf1|pf2|2a (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东师范大学公开招聘人员(23名)考前自测高频考点模拟试题及一套参考答案详解
- 智能家电产品设计与生产合作框架协议
- 2025年事业单位招聘考试市场营销专业综合能力测试试卷(真题模拟实战)
- 智能编织工艺优化标准-洞察与解读
- 宏华生物中考试卷及答案
- 黑龙江乐理考试题及答案
- 河南普通话考试题及答案
- 2025国考大连市资产管理岗位申论模拟题及答案
- 2025国考大连证监局申论对策建议题库含答案
- 2025国考大兴安岭会计审计岗位申论高频考点及答案
- 离心式通风机-离心式通风机的构造和工作原理
- GCP的质量控制课件
- 卿涛人力资源管理第2章人力资源战略
- 2023年12月英语四级真题及答案下载(第一套)(word版)
- 2022年全国医院感染横断面调查个案登记表
- 新能源概论新能源及其材料课件
- 2016年-中国PCI冠脉介入指南专业解读
- 2021年唐山交通发展集团有限公司校园招聘笔试试题及答案解析
- 幼儿园教学课件小班社会《孤独的小熊》课件
- 煤矿岗位安全安全操作规程
- 成语故事——井底之蛙课件PPT
评论
0/150
提交评论