全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初2数学下册全部知识点第十六章 分式一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。分式乘方:分式乘方要把分子、分母分别乘方。四、整数指数幂:(1) (2)较小数的科学记数法;五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。第十七章 反比例函数一、形如y= (k为常数,k0)的函数称为反比例函数;二、反比例函数的图像属于双曲线; 三、性质:当k0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。第十八章 勾股定理一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 二、勾股定理逆定理:如果三角形三边长a,b,c满足 ,那么这个三角形是直角三角形。三、经过证明被确认正确的命题叫做定理。四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)第十九章 四边形一、平行四边形:1、定义:有两组对边分别平行的四边形叫做平行四边形。2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。3、判定:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。(5)有两组对边分别平行的四边形叫做平行四边形。(定义) 4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。二、矩形:1、定义:有一个角是直角的平行四边形叫做矩形。2、性质:矩形的四个角都是直角;矩形的对角线平分且相等。3、判定:(1)有一个角是直角的平行四边形叫做矩形。(定义)(2)对角线相等的平行四边形是矩形。(3)有三个角是直角的四边形是矩形。4、直角三角形斜边上的中线等于斜边的一半。三、菱形:1、定义:一组邻边相等的平行四边形是菱形2、性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。3、判定:(1)一组邻边相等的平行四边形是菱形。(定义)(2)对角线互相垂直的平行四边形是菱形。(3)四条边相等的四边形是菱形。4、S菱形=底高 S菱形= ab(a、b为两条对角线) 四、正方形:1、定义:有一组邻边相等的矩形是正方形。或有一个角是直角的菱形是正方形。2、性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形。3、判定:(1)邻边相等的矩形是正方形。(2)有一个角是直角的菱形是正方形。五、梯形:1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。2、等腰梯形定义:两腰相等的梯形叫做等腰梯形。性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。判定:同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。3、梯形的中位线分别平行于上、下两底,且等于上、下两底和的一半。六、重心:1、线段的重心就是线段的中点。2、平行四边形的重心是它的两条对角线的交点。3、三角形的三条中线交于疑点,这一点就是三角形的重心。七、数学活动(教材115页):1、折纸多60、30、15的角证明方法(重点30角)2、宽和长的比是 (约为0.618)的矩形叫做黄金矩形。第二十章 数据的分析一、加权平均数:计算公式(教材125页。)二、中位数:将一组数据按照由小到大(大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。三、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。四、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。五、方差:1、计算公式: ( 表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮肤科痱子护理方案
- 2025年证券投资顾问之证券投资顾问业务强化训练试卷A卷附答案
- 2021年北京重点校高一(下)期中物理试卷试题汇编:动量
- 2025建筑工程设计合同
- 新课改培训心得体会
- 骨髓炎抗生素治疗指南培训
- 质量管理调研报告
- 幼儿园教师晋升职称述职报告
- 急诊科:各种急性中毒的处理方法
- 心理学精神分析
- 2025北京海淀高三上学期期中化学试卷和答案
- 2025版哮喘病症状解读及护理要点
- 高一年级全市联考英语质量分析
- 加氢站安全操作规程
- 贵州省铜仁市思南中学2026届高三上学期10月月考化学试卷(含答案)
- 放疗科头颈癌放疗副作用处理策略
- 2025年汽车外饰件行业分析报告及未来发展趋势预测
- 储罐施工安装施工方案
- 2025年重组人促红素行业分析报告及未来发展趋势预测
- 2025消防法考试题库及参考答案
- 2025年考叉车题库1000道题及答案
评论
0/150
提交评论