直线的方程(一).doc_第1页
直线的方程(一).doc_第2页
直线的方程(一).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线的方程(一)一、教学目标:1.掌握直线的点斜式方程、斜截式方程和两点式方程,归纳方程特点及其适用范围并能简单应用.2.能发现斜截式方程与一次函数间的联系与区别.一、创设情境“我想知道流星能飞多久,它的美丽是否值得去寻求,夜空的花散落在你身后,幸福了我i很久,值得我去等待,于是我许了个愿保佑,在最美的时候,我许的愿”飞逝的流星形成一条美丽的弧线,这条弧线可以近似看作是什么图形呢?若在平面直角坐标系中,能否确定它的位置呢?二、知识导学问题1:(1)图片中飞逝的流星划出一条美丽的弧线,这条弧线可以近似看作直线.(2)经过点P0(x0,y0)的直线l有无数条,可分为两类:(i)斜率存在,设斜率为k,则直线方程为y-y0=k(x-x0),这个方程是由直线上点P0(x0,y0)及其斜率k 确定的,所以叫作直线的点斜式方程.(ii)斜率不存在,则直线方程为x=x0.问题2:(1)已知直线l的斜率为k,且与y轴的交点为(0,b),代入直线的点斜式方程,得y=kx+b,我们称b为直线l在y轴上的截距.这个方程是由直线l的斜率和它在y轴上的 截距确定的,所以叫作直线的斜截式方程.(2)直线的斜截式方程截距:b.一般形式:y=kx+b.适用条件:斜率存在.注意:当直线和x轴垂直时,斜率不存在,此时方程不能用点斜式方程和斜截式方程表示.问题3:已知两点坐标为P1(x1,y1),P(x2,y2)(其中x1x2,y1y2),则通过这两点的直线方程为.与坐标轴平行或垂直的直线没有两点式方程,但其变形(y2-y1)(x-x1)=(x2-x1)(y-y1)可表示过任意两点的直线方程.问题4:若点P1,P2的坐标分别为(x1,y1),(x2,y2),且线段P1P2的中点M的坐标为(x,y),则,此公式为线段P1P2的中点坐标公式.三、基础应用1.已知直线方程y-3=(x-4),则这条直线经过的定点,倾斜角分别是().A.(4,3),60B.(-3,-4),30C.(4,3),30D.(-4,-3),602.直线方程可表示成点斜式方程的条件是().A.直线不过原点B.直线的斜率不存在C.直线的斜率存在D.不同于上述答案3.经过点(-,2)且倾斜角是30的直线的点斜式方程是.4.写出斜率为-2,且在y轴上的截距为t的直线的方程,当t为何值时,直线通过点(4,-3)?并作出该直线的图像.四、重、难点呈现(一)直线方程形式的选择根据条件写出下列直线的方程:(1)斜率为3,经过点(5,-4);(2)斜率为-2,经过点(0,2);(3)经过点(2,1)和(3,-4);(4)经过点(4,2),倾斜角为90.(二)直线的两点式方程已知三角形的三个顶点是A(-5,0),B(3,-3),C(0,2).(1)求BC边所在的直线方程;(2)求BC边上的中线AM所在的直线方程.(三) “截距”与“距离”的关系求过点P(2,3),并且在两坐标轴上的截距相等的直线方程.五、拓展应用1、求满足下列条件的直线方程:(1)斜率为2,经过点(2,0);(2)经过点B(2,3),倾斜角是45;(3)斜率为2,在y轴上的截距是5; (4)直线l与直线l1:y=2x+6在y轴上有相同的截距,且直线l的斜率与l1的斜率互为相反数,求直线l的方程.2、一条光线从点A(3,2)出发,经过x轴反射后,通过点B(-1,6),求入射光线和反射光线所在的直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论