




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计(论文)外文文献翻译(本科学生用) 题 目:在多向应力作用下从混凝土的特性看受弯 钢筋混凝土梁变化的一个基本试验 学生姓名: 学号: 学部(系): 专业年级: 指导教师: 职称或学位:高工 2016年3月4日外文文献翻译(译成中文1000字左右):【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出版社(或刊物名称)、出版时间(或刊号)、页码。提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】 在多向应力作用下从混凝土的特性看受弯钢筋混凝土梁变化的一个基本试验(译文)M. D. Kotsovos 本文所探讨的问题是通常认为在荷载递增下钢筋混凝土结构呈现弹性状态,这必须是因为混凝土的应力-应变关系有一个逐渐递减的临界部分的真实性。试验数据显示受弯钢筋混凝土梁会在受压面的纵向压应变超出0.0035。这表明这些应变是钢筋混凝土结构的本质,它是由于一个比极限强度小的复杂多向的应力状态而不是塑性材料的特性引起的。一个复杂应力系统的存在为梁的状态提供了一个基本试验,而不是想象的一个现有设计过程。1.引言“剖面”理论不仅是通常认为能很真实地描述钢筋混凝土梁和预应力混凝土梁在弯矩和轴向荷载下的变形,而且能确切地阐述,所以它提供了一个设计工具,因为它的有效和简单而闻名1。假设在临界横截面伤是均衡的,这个理论分析地描述了一个梁的承载能力和几何特性之间的关系。变形协调必须满足“水平横截面荏苒水平”的假定和纵向混凝土和钢筋的应力是通过材料的应力-应变的特性来估算的。为了简化计算,忽略横向的应力和应变。受压混凝土的应力-应变特性认为能够被混凝土试块的变形充分地描述,例如在极限的有限状态下,棱柱体或圆柱体在横截面的受压区受单轴压力和应力,就像现行规范所建议的CP1101,显示出一个与图1相似的形状。图1表明纵向应力随着与中和轴的距离增加而增加至最大值,然后保持不变。这个分布图已经达到安全性和受压混凝土的应力-应变关系的广泛观点,由上升和逐渐下降的两部分组成(如图2所示)。超出极限的部分,材料的塑性应力能力如图1所示,被认为对梁的最大承载能力有较大的作用。 图1.临界面破坏建议CP为110的应力和应变分布 图2.受压混凝土结构的标准应力-应变关系然而,最近关于在集中力作用下的混凝土的变化的一个分析性调查表明,在压应力作用下混凝土的极限强度变形没有对所有被调查的结果形式的变化产生明显的影响(2,3)。如果这个变化对任何结果都是典型的,那么在钢筋混凝土梁的顶面被测的很大的压应变(超出量0.0035)在它的极限有限状态下(如图1),不能对极限单轴应力-应变特性产生作用。因此,因为压应变在单轴压力下的任何混凝土的极限强度等级下为=0.002(如图2所示),在混凝土的单轴应力-应变关系下降部分,将出现一个在荷载作用下梁变化的现在可行的预测。根据以上的观点,本文的描述都在以下的评价中,广泛的支持观点的一个单轴应力-应变关系由一个上升的和一个逐渐下降的部分组成,对受弯的根据混凝土梁的变化的真实描述是非常必要的。这个结果是从梁在两点荷载作用下弯曲得到,表明很大的应变的通过梁受压的混凝土呈现的,由于三维应力而不是一味的混凝土极限应力-应变特性。这表明材料本身受到一个完整和直接的承载能力损失,当极限强度被超过的假定与弹性结构的变化并存的,通过偏心荷载或瞬间旋转关系表明的。2.试验细节2.1试块三根矩形钢筋混凝土梁,跨度915mm,横截面为102mm51mm,受剪区跨度为305mm(如图2所示)。受力筋由两个直径为6mm,屈服荷载为11.8kN的钢筋组成。在梁端部钢筋弯起,就能为整个受剪跨度提供抗力。整个受剪跨度内压缩张拉的加强筋布置了七个直径为3.2mm的箍筋。在梁的中间部分没有压缩加强筋和箍筋。根据上面所述的钢筋布置,所有的梁都是受弯破坏而不是受剪破坏,尽管剪跨比为3。所有的梁与受控的试块一起放在20 的湿麻袋下七天,然后贮存在实验室条件下(20,40%湿度)2个月,直到试验结束。所有混凝土配料都在表格I中。2.2试验过程通过液压锤和分布梁加载,每次大约增加0.5kN。为了测量荷载和试块的形变,每次持荷约2分钟。荷载用一个荷载单元来测量,形变由20mm长的电阻应变片和位移转换器测得。应变片贴在梁纵向和横向的顶面和侧面(如图4所示)。图4也表明了直流电压位移转换器(LVDTS)的位置,它是用来测量跨中和加载横截面的形变。测量数据记录在计算机自动数据记录仪中,能够测量应变和形变的灵敏度分别为2微应变和0.002mm。3.试验结果主要的试验结果是从试验中得到的,能更好地了解梁的变化,所示图5 至图14的信息是必不可少的。图5表明结果的单轴压应力-应变关系应用于调查中,而图6 和图7表明纵向应变与横向应变的关系,分别位于(a)弯曲裂缝最终导致破坏横截面出和(b)受剪区跨内的横截面出。图6和图7也包含了纵向应变-横向应变与图5的应力-应变关系是一致的。图8中标准的改变在梁顶面的横向形变轮廓图中和图9提供一个轴力和应力随着荷载的增加而增大,导致梁向下变形的图框表示方法。梁的标准偏心荷载关系如图10所示,而图11描述了测得平均竖向应变的梁侧面的临界截面变形和横向应变在顶面测得。图12中标准结果的强度和形变在各种状态的十三轴应力下河图13所呈现的梁标准裂缝图样在破坏的瞬间。最后图14表明在临界截面的受压区伤纵向应力的分布形状,可根据概念来预测破坏,在以下部分将被讨论。图3.梁的细节 (原文)A fundamental explanation of the behaviour ofreinforced concrete beams in flexure basedon the properties of concrete under multiaxial stressM. D. KotsovosDepartment of Civil Engineering, Imperial College of Science and Technology, London (U. K.)The paper questions the validity of the generally accepted view that for a reinforced concretestructure to exhibit ductile behaviour under increasing load it is necessary for the stressstrain relationships of concrete to have a gradually descending post-ultimate branch.Experimental data are presented for reinforced concrete beams in bending which indicate the presence of longitudinal compressive strains on the compressive face in excess of 0.0035. It is shown that these strains, which are essential for ductile behaviour, are caused by acomplex multiaxial compressive state of stress below ultimate strength rather than postultimate material characteristics. The presence of a complex stress system provides a fundamental explanation for beam behaviour which does not affect existing design procedures.1. INTRODUCTIONThe plane sections theory not, only is generally considered to describe realistically the deformation response of reinforced and prestressed concrete beams under flexure and axial load, but is also formulated so that it provides a design tool noted for both its effectiveness and simplicity 1. The theory describes analytically the relationship between load-carrying capacity and geometric characteristics of a beam by considering the equilibrium conditions at critical cross-sections. Compatibility of deformation is satisfied by the plane cross-sections remain plane assumption and the longitudinal concrete and steel stresses are evaluated by the material stress-strain characteristics. Transverse stresses and strains are ignored for the purposes of simplicity. The stress-strain characteristics of concrete in compression are considered to be adequately described by the deformational response of concrete specimens such as prisms or cylinders under uniaxial compression and the stress distribution in the compression zone of a cross-section at the ultimate limit state, as proposed by current codes of practice such as CP 110 1, exhibits a shape similar to that shown in figure 1. The figure indicates that the longitudinal stress increases with thedistance from the neutral axis up to a maximum value and then remains constant. Such a shape of stress distribution has been arrived at on the basis of both safety considerations and the widely held view that the stress-strain relationship of concrete in compression consists of both an ascending and a gradually descending portion (seefig. 2). The portion beyond ultimate defines the post-ultimate stress capacity of the material which, Typical stress-strain relationship for concrete in compression. as indicated in figure 1, is generally considered to make a major contribution to the maximum load-carrying capacity of the beam.However, a recent analytical investigation of the behaviour of concrete under concentrations of load has indicated that the post-ultimate strength deformational response of concrete under compressive states of stress has no apparent effect on the overall behaviour of the structural forms investigated ( 2, 3). If such behaviour is typical for any structure, then the large compressive strains (in excess of 0.0035) measured on the top surface of a reinforced concrete beam at its ultimate limit state (see fig. 1), cannot be attributed to post-ultimate uniaxial stress-strain characteristics. Furthermore, since the compressive strain at the ultimate strength level of any concrete under uniaxial compression is of the order of 0.002 (see fig. 2), it would appear that a realistic prediction of the beam response under load cannot be based solely on the ascending portion of the uniaxial stress-strain relationship of concrete.In view of the above, the work described in the following appraises the widely held view that a uniaxial stress-strain relationship consisting of an ascending and a gradually descending portion is essential for the realistic description of the behaviour of a reinforced concrete beam in flexure. Results obtained from beams subjected to flexure under two-point loading indicate that the large strains exhibited by concrete in the compression zone of the beams are due to a triaxial state of stress rather than the uniaxial post-ultimate stress-strain characteristics of concrete. It is shown that the assumption that the material itself suffers a completeand immediate loss of load-carrying capacity when ultimate strength is exceeded is compatible with the observed ductile structural behaviour as indicated by load-deflexion or moment-rotation relationships.2. EXPERIMENTAL DETAILS2.1. SpecimensThree rectangular reinforced concrete beams of 915 mm span and 102 mm height x 51 mm width cross-section were subjected to two-point load with shear spans of 305 mm (see fig. 3). The tension reinforcement consisted of two 6 mm diameter bars with a yield load of 11.8 kN. The bars were bent back at the ends of the beams so as to provide compression reinforcement along the whole length of the shear spans.Compression and tension reinforcement along each shear span were linked by seven 3.2 mm diameter stirrups. Neither compression reinforcement nor stirrups were provided in the central portion of the beams. Due to the above reinforcement arrangement all beams failed in flexure rather than shear, although the shear span to effective depthratio was 3.The beams, together with control specimens, were cured under damp hessian at 20 for seven days and then stored in the laboratory atmosphere (20and 40% R.H.) for about 2 months, until tested. Full details of the concrete mix used are given in table I.2.2. TestingLoad was applied through a hydraulic ram and spreader beam in increments of approximately 0.5 kN. At each increment the load was maintained constant for approximately 2 minutes in order to measure the load and the deformation response of the specimens. Load was measured by using a load cell and deformation response by using both 20 mm long electrical resistance strain gauges and displacement transducers. The strain gauges were placed on the top and side surfaces of the beams in the longitudnal and the transverse directions as shown in figure 4. The figure also indicates the position of the linear voltage displacement transducers (LVDTs) which were used to measure deflexion at mid-span and at the loaded cross-sections.The measurements were recorded by an automatic computer-based data-logger (Solatron) capable of measuring strains and displacements to a sensitivity of 2 microstrain and 0.002 ram, respectively. 3. EXPERIMENTAL RESULTSThe main results obtained from the experiments together with information essential for a better understanding of beam behaviour are shown in figures 5 to 14. Figure 5 shows the uniaxial compression stressstrain relationships of the concrete used in the investigation, whereas figures 6 and 7 show the relationships between longitudinal and transverse strains, measured on the top surface of the beams (a) at the cross-sections where the flexure cracks which eventually cause failure are situated (critical sections) and (b)at cross-sections within the shear span, respectively.Figures 6 and 7 also include the longitudinal straintransverse strain relationship corresponding to the stress-strain relationship
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 威信安全员b证考试及答案
- 2025年环境大赛考试题及答案
- 2025一级建造师高分题库【考点提分】附答案详解
- 2025年特斯拉学习考试题及答案
- 2025年体育概论试卷模板及答案
- 导游资格考试通关考试题库有答案详解
- 2025计算机四级考试综合练习完整附答案详解
- 2025年度企业固定资产借款合同新版本(合同范本)
- 2025年四川省邛崃市中考数学考前冲刺试卷含答案详解【基础题】
- 2025年在建工程抵押担保借款合同样本
- TSCS 000013-2021 碳化硼-碳化硅芯块 无机阴离子(F-、Cl-、Br-、I-)的测定 离子色谱法
- GB/T 6426-1999铁电陶瓷材料电滞回线的准静态测试方法
- GB/T 14846-2014铝及铝合金挤压型材尺寸偏差
- 广西版建筑装饰装修工程消耗量定额说明及计算规则
- GA/T 594-2006保安服务操作规程与质量控制
- 髋关节解剖资料课件
- 坚持男女平等基本国策(妇联培训)课件
- 颅脑外伤(共61张PPT)
- 人教版《生命.生态.安全》六年级上册全册教案
- 矿种代码与规模分类表
- 2022版义务教育语文课程标准解读之核心素养与课程目标PPT
评论
0/150
提交评论