




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第30课时 平面向量复习课(2)【合作探究】1向量的加法运算律 向量的加法满足_,即_;_2.向量的数乘运算律 _;_;_3.向量的数量积运算律 _;_;_4.平面向量的基本定理 5.向量的应用【展示点拨】cabaqp例1 如图,在直角abc中,已知,若长为的线段以点为中点,问的夹角取何值时的值最大?并求出这个最大值例2.已知点o是abc内一点,设,且 =2, =1, =3,试用,表示例3.已知向量且,满足关系 + = - ( 0).(1) 求与的数量积用 表示的解析式f( ).(2) 能否和垂直?能否和平行?若不能,请说明理由;若能,则求出相应的 值(3) 求与夹角的最大值【同步训练】一、填空题(每小题5分,共70分)1.设的长度分别为4和3,夹角为1200,则=_.2.若三点共线,则x=_. 学 学 3.设是平面直角坐标系内分别与x轴,y轴方向相同的两个单位向量,o为坐标原点,若,则的坐标是_.4.设则表示为_.5.已知则=_.6.若向量且=7,那么=_.7.已知a(6,1),b(0,-7), c(-2,-3),则abc的面积是_.8.已知且的夹角是钝角,则实数的取值范围是_.9.已知,其中x0,若,则x的值为_.10.在abc中,且,则_.(用表示)11.已知且关于x的方程有实根,则的夹角的取值范围是_.12.已知且,则=_.13.如图,函数y=2sin(x+),xr,(其中0)的图象与y轴交于点(0,1) (第13题)设p是图象上的最高点,m、n是图象与x轴的交点,则的夹角余弦值为 14.若对n个向量存在n个不全为零的实数 1, 2,, n,使得成立,则称向量为“线性相关”.依此规定,能说明,“线性相关”的实数 1, 2, 3依次可以取_(写出一组数值即可,不必考虑所有情况).二、解答题(1516每小题15分,1719题20分,共90分)15.已知a(a,1),b(3,5),c(7,3),d(b,-1)是菱形abcd的四个顶点,求实数a,b的值.16.已知平面上三点a,b,c满足,求的值.17.已知abc三个顶点的坐标分别为a(3,4)、b(0,0)、c(c,0)(1)若abc是直角三角形,求的值;(2)若,求sina的值.18.已知点o是abc内一点,aob=1500, boc=900,设,且试用表示. 学 学 19.已知向量且满足关系.(1)求的数量积用 表示的解析式f( );(2)能否和垂直? 能否和平行?若不能,则说明理由;若能,则求出相应的 值;(3)求夹角的最大值.同步训练答案1. 2.3 3.(11,8) 4. 5. 57 6. 2 7.20 8. 9. 4 10. 11. 12. 13. 14. 4,-2,-115.菱形abcd,即(3-a,4)=(7-b,4),则b-a=4 又菱形abcd的对角线互相垂直, ,而,(7-a)(b-3) +2(-6)=0 联立解得,a=1,b=5或a=5,b=9.16.,abc为直角三角形,其中b为直角.=34cos900+45(-)+35(-)=-25.17.(1) , 若a为直角,则 得 ; 若b为直角不可能;若c为直角,则,得 ;所以. (2) , 得 .18. aob=1500, boc=900, aoc=1200.设则 , 即.19.(1)由已知,.8 =2 2+2. f( )=.(2) =,不可能垂直.若,由于知同向,于是有,即,解之得 =2.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Starter Unit 1 Hello!Section A (1a~2d)课件(内嵌音频) 人教版(2024)初中英语七年级上册
- 《杭州市城市桥梁工程档案移交书(2025年版)》
- 特定行业员工职业资格认证与培训用人劳动合同范本
- 离婚协议公证文本格式规范及范本模板
- 个人消费抵押借款合同:信用评级与消费权益保障协议
- 气井地震勘探手册
- 人际交往技能培训指导手册设计报告方案分析校验专家访谈
- 工控系统设计实施流程规范
- 信息系统管理与商业智能练习题
- 如何在学习中培养创造性想象
- 2025年全国“质量月”企业员工全面质量管理知识答题(含答案)
- 2025低空经济发展及关键技术概况报告
- 2025年中考历史(山西卷)真题评析
- 全国青少年科技辅导员专业水平认证笔试考题
- 某项目工程应急处置预案工程施工组织设计方案
- 通信系统原理概述
- 代理车辆备案业务委托书(一)
- Flowserve控制阀产品指南
- 经济预测与决策之回归分析预测法
- 尚客优酒店各部门岗位职责
- 分子生物学李世杰第二章 dna结构
评论
0/150
提交评论