




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1回_归_分_析1线性回归方程设样本点为(x1,y1),(x2,y2),(xn,yn),线性回归方程为yabx.则lxx(xi)2n2,lxy(xi)(yi)iyin ,lyy(yi)2n2,b,ab.2相关系数计算r性质范围r1,1线性相关程度(1)|r|越大,线性相关程度越高;(2)|r|越接近于0,线性相关程度越低;(3)当r0时,两个变量正相关;(4)当r0时,两个变量负相关;(5)当r0时,两个变量线性不相关1回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法2回归直线yabx过点(,),其中i,i.3相关系数的绝对值越接近于1,相关性越强;相关系数越接近于0,相关性越弱线性回归方程例1某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x()101113128发芽数y(颗)2325302616该农科所确定的研究方案:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验(1)若选取12月1日和12月5日这两日的数据进行检验,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程ybxa;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?若可靠,请预测温差为14 时的发芽数思路点拨(1)利用公式求出a,b的值即可;(2)将相关数据代入(1)中所求的回归方程验证精解详析(1)由数据,求得12,27,iyi112513301226977,112132122434,所以b,ab3.所以y关于x的线性回归方程为yx3.(2)当x10时,y10322,|2223|2;当x8时,y8317,|1716|2.所以得到的线性回归方程是可靠的当x14时,有y14332.所以预测温差为14 时的发芽数约为32颗一点通求回归直线方程的基本步骤:1下表是降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,得到y关于x的线性回归方程为y0.7x0.35,那么表中m的值为()x3456y2.5m44.5a.3.5b3c2.5 d2解析:4.5,又(,)在线性回归方程上,0.74.50.35,m3.答案:b2调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:y0.254x0.321.由线性回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元解析:以x1代x,得y0.254(x1)0.321,与y0.254x0.321相减可得,年饮食支出平均增加0.254万元答案:0.2543.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程ybxa,其中b20,ab;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解:(1)由于(x1x2x3x4x5x6)8.5,(y1y2y3y4y5y6)80.所以ab80208.5250,从而回归直线方程为y20x250.(2)设工厂获得的利润为l元,依题意得lx(20x250)4(20x250)20x2330x1 000202361.25.当且仅当x8.25时,l取得最大值故当单价定为8.25元时,工厂可获得最大利润.相关系数例2关于两个变量x和y的7组数据如下表所示:x21232527293235y711212466115325试判断x与y之间是否有线性相关关系思路点拨首先求出r的值,再判断相关关系精解详析(21232527293235)27.4,(711212466115325)81.3,2122322522722923223525 414,iyi2172311252127242966321153532518 542,7211221224266211523252124 393,r0.837 5.由于r0.837 5与1比较接近,x与y具有线性相关关系一点通回归分析是定义在具有相关关系的两个变量的基础上的,对于相关关系不明确的两个变量,可先作散点图,由图粗略的分析它们是否具有相关关系,在此基础上,求其回归方程,并作回归分析4(湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:y与x负相关且2.347x6.423;y与x负相关且3.476x5.648; y与x正相关且5.437x8.493;y与x正相关且4.326x4.578.其中一定不正确的结论的序号是()a bc d解析:中y与x负相关而斜率为正,不正确;中y与x正相关而斜率为负,不正确答案:d5对四对变量y和x进行线性相关检验,已知n是观测值组数,r是相关系数,且已知:n7,r0.953 3;n15,r0.301 2;n17,r0.499 1;n3,r0.995 0.则变量y和x线性相关程度最高的两组是()a和 b和c和 d和解析:相关系数r的绝对值越大,变量x,y的线性相关程度越高,故选b.答案:b6某厂的生产原料耗费x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应关系:x2468y30405070判断x与y之间是否存在线性相关关系解:画出(x,y)的散点图,如图所示,由图可知x,y呈现线性相关关系5,47.5,120,9 900,iyi1 080,r0.982 7.故x与y之间存在线性相关关系.可线性化的回归分析问题例3在一化学反应过程中某化学物质的反应速度y(g/min)与某种催化剂的量x(g)有关,现收集了8组数据列于表中,试建立y与x之间的回归方程.催化剂量x(g)1518212427303336化学物质反应速度y(g/min)6830277020565350思路点拨作出数据的散点图,选择合适的函数模型转化为线性模型精解详析根据收集的数据作散点图:根据样本点分布情况,可选用两种曲线模型来拟合(1)可认为样本点集中在某二次曲线yc1x2c2的附近令tx2,则变换后样本点应该分布在直线ybta(bc1,ac2)的周围由题意得变换后的t与y的样本数据表如下:t2253244415767299001 0891 296y6830277020565350作出y与t的散点图:由y与t的散点图可观察到样本数据点并不分布在一条直线的周围,因此不宜用线性回归方程ybta来拟合,即不宜用二次曲线yc1x2c2来拟合y与x之间的关系(2)根据x与y的散点图也可以认为样本点集中在某一条指数型函数曲线yc1ec2x的周围令zln y,则zc2xln c1,即变换后样本点应该分布在直线zbxa(aln c1,bc2)的周围,由y与x的数据表可得z与x的数据表:x1518212427303336z1.7922.0793.4013.2964.2485.3234.1745.858作出z与x的散点图:由散点图可观察到样本数据点大致分布在一条直线上,所以可用线性回归方程来拟合它由z与x的数据表,得到线性回归方程为z0.181 4x0.854 7,所以非线性回归方程为ye0.181 4x0.854 7,因此,该化学物质反应速度关于催化剂的量的非线性回归方程为ye0.181 4x0.854 7.一点通在求两个变量的回归方程时,由于两个变量不一定是线性关系,因此不能直接利用线性回归方程建立两个变量的关系,但可以通过变换的方法将非线性关系转化为线性回归模型非线性回归问题有时并不给出经验公式,这时我们可以画出已知数据的散点图,把它与学过的各种函数图像作比较,挑选一种与这些散点拟合的最好的函数,然后像本题这样,采用适当的变量置换,把问题化为线性回归分析问题,使之得到解决7如图是依据1981至2001年我国出口贸易量x的原始数据得到的散点图给出下列经验公式:yaxb;yax2b;yaebx.请依据该散点图的特征,写出拟合程度最不好的经验公式的序号是_解析:由散点图可知,数据分布呈单调递增趋势,且递增的速度越来越快,并且可观察到样本数据点并不分布在一条直线的周围,因此不宜用线性回归方程来拟合所以直线yaxb拟合程度最不好答案:8在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521试建立y与x之间的回归方程解:由数值表可作散点图如下:根据散点图可知y与x近似地呈反比例函数关系,设y,令t,则ykt,原数据变为t4210.50.25y1612521由置换后的数值表作散点图如下:由散点图可以看出y与t呈近似的线性相关关系列表如下:itiyitiyity141664162562212244144315512540.5210.25450.2510.250.062517.753694.2521.312 5430所以1.55,7.2.所以b4.134 4.aybt0.8.所以y0.84.134 4t.所以y对x的回归方程是y0.8.1判断变量之间的线性相关关系,一般用散点图,但在作图中,由于存在误差,有时很难判断这些点是否分布在一条直线的附近,从而就很难判断两个变量之间是否具有线性相关关系,此时就必须利用线性相关系数来判断2相关系数r可以定量地反映出变量间的相关程度,明确的给出有无必要建立两变量间的线性回归方程1(湖北高考)根据如下样本数据x345678y4.02.50.50.52.03.0 得到的回归方程为ybxa,则()aa0,b0 ba0,b0 ca0 da0,b0解析:由表中数据画出散点图,如图,由散点图可知b0,选b.答案:b 2.某工厂车间加工零件的个数x与所花费的时间y(单位:h)之间的线性回归方程为y0.01x0.5,则加工600个零件大约需要的时间为()a0.5 h b3.5 hc5.5 h d6.5 h解析:将x600代入回归直线方程,得y0.016000.56.5,可以预测加工600个零件需要6.5 h,这是一个预报值,不是生产600个零件的准确时间数答案:d3设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为y0.85x85.71,则下列结论中不正确的是()ay与x具有正的线性相关关系b回归直线过样本点的中心(,)c若该大学某女生身高增加1 cm,则其体重约增加0.85 kgd若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:由于回归直线的斜率为正值,故y与x具有正的线性相关关系,选项a中的结论正确;回归直线过样本点的中心,选项b中的结论正确;根据回归直线斜率的意义易知选项c中的结论正确;由于回归分析得出的是估计值,故选项d中的结论不正确答案:d4某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得线性回归方程ybxa中的b为9.4,据此模型预报广告费用为6万元时销售额为()a63.6万元 b65.5万元c67.7万元 d72.0万元解析:样本中心点是(3.5,42),则ab429.43.59.1,所以回归直线方程是y9.4x9.1,把x6代入,得y65.5.答案:b5设(x1,y1),(x2,y2),(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),有以下结论:直线l过点(,);x和y的相关系数为直线l的斜率;当n为偶数时,分布在l两侧的样本点的个数一定相同其中正确结论的序号是_解析:由线性回归直线的性质知只有正确答案:6已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为y1.4xa,则a的值是_解析:1.5,3,这组数据的样本中心点是(1.5,3),把样本中心点代入回归直线方程y1.4xa,31.41.5a,a0.9.答案:0.97已知某设备的使用年限x和所支出的维修费用y(万元)的统计资料如下表:使用年限x23456维修费用y2.23.85.56.57.0若由资料知,y对x成线性相关关系试求:(1)线性回归方程ybxa中的a,b的值;(2)估计使用年限为10年时,维修费用是多少?解:(1)由已知数据制成下表:i12345合计xi2345620yi2.23.85.56.57.025xiyi4.411.42232.542112.3x49162536904,5,90,iyi112.3,于是有b1.23,ab51.2340.08.(2)线性回归方程为y1.23x0.08,当x10时,y1.23100.0812.38(万元),即估计使用年限为10年时,维修费用是12.38万元8在钢铁碳含量对于电阻的效应研究中,得到如下数据表:碳含量x(%)0.100.300
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解析卷-人教版八年级物理上册第5章透镜及其应用-生活中的透镜必考点解析练习题(含答案详解)
- 2024年突发大气污染事件应急监测考核试卷
- 2024年中国北京同仁堂有限责任公司高校毕业生招聘真题
- 2025年广东省建筑施工企业安全生产管理人员考试(专职安全生产管理人员C1类)(机械类)冲刺试题及答案
- 解析卷-人教版八年级物理上册第4章光现象专项测评试卷(附答案详解)
- 解析卷人教版八年级物理上册第4章光现象-光的色散定向攻克试卷(附答案详解)
- 2025年金属冶炼单位主要负责人考试(金属冶炼铁合金冶炼、锰冶炼、铬冶炼)全真模拟试题及答案
- 2025年全国数控车工高级技师技能知识笔试试题(附答案)
- 2024年省燃气经营企业从业人员考试(液化天然气储运工)仿真试题及答案四
- 2025海南省生产经营单位主要负责人和安全生产管理人员考试自测试题及答案
- 智能数控技术介绍
- 2025年中级经济师资格考试(知识产权专业知识和实务)历年参考题库含答案详解(5套)
- 企业章程标准版范本
- 2025年cocos lua面试题及答案
- 新闻出版行业中层后备干部培训班学习心得体会
- 同业客户管理办法
- 种养结合生态循环农业项目可行性研究报告
- 全国青少年“学宪法、讲宪法”知识竞赛题库及答案
- 出租库房安全管理办法
- 美团培训课件
- 《不信教不涉黑不涉恶专题党课》课件
评论
0/150
提交评论