



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案表 课题121排列(第二课时)课型新授课教学目标知识与技能 了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。 过程与方法 能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观 能运用所学的排列知识,正确地解决的实际问题.重点难点教学重点 排列、排列数的概念教学难点 排列数公式的推导 教具准备多媒体课时安排1教学过程与教学内容教学方法、教学手段与学法、学情教学过程 例1(课本例2)某年全国足球甲级(a组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解 任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列因此,比赛的总场次是=1413=182. 例2(课本例3)(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法? (2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解 (1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是=543=60. (2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是555=125. 例 8 中两个问题的区别在于 ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算例3(课本例4)用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析 在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素一般的,我们可以从特殊元素的排列位置人手 考虑问题解法 1 由于在没有重复数字的三位数中,百位上的数字不能是o,因此可以分两步完成排列第1步,排百位上的数字,可以从1到9 这九个数字中任选 1 个,有种选法;第2步,排十位和个位上的数字,可以从余下的9个数字中任选2个,有种选法(图1.2一 5)根据分步乘法计数原理,所求的三位数有=998=648(个) .解法 2 如图1.2 一6 所示,符合条件的三位数可分成 3 类每一位数字都不是位数有 a 母个,个位数字是 o 的三位数有揭个,十位数字是 0 的三位数有揭个根据分类加法计数原理,符合条件的三位数有=648个解法 3 从0到9这10个数字中任取3个数字的排列数为,其中 o 在百位上的排列数是,它们的差就是用这10个数字组成的没有重复数字的三位数的个数,即所求的三位数的个数是 -=1098-98=648. 对于例9这类计数问题,可用适当的方法将问题分解,而且思考的角度不同,就可以有不同的解题方法解法 1 根据百位数字不能是。的要求,分步完成选 3 个数组成没有重复数字的三位数这件事,依据的是分步乘法计数原理;解法 2 以 o 是否出现以及出现的位置为标准,分类完成这件事情,依据的是分类加法计数原理;解法 3 是一种逆向思考方法 先求出从10个不同数字中选3个不重复数字的排列数,然后从中减去百位是。的排列数(即不是三位数的个数),就得到没有重复数字的三位数的个数从上述问题的解答过程可以看到,引进排列的概念,以及推导求排列数的公式,可以更加简便、快捷地求解“从n个不同元素中取出 m (mn)个元素的所有排列的个数”这类特殊的计数问题 1.1节中的例 9 是否也是这类计数问题?你能用排列的知识解决它吗?四、课堂练习 1若,则 ( ) 2与不等的是 ( ) 3若,则的值为 ( ) 4计算 ; 5若,则的解集是 6(1)已知,那么 ; (2)已知,那么= ;(3)已知,那么 ; (4)已知,那么 学 7一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序? 答案 1. b 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广播电视与通信课件
- 安全培训效益评估方案课件
- 2025年浙江杭州市萧山区第三人民医院招聘编外人员1人考前自测高频考点模拟试题及答案详解(有一套)
- Hydroxyethyl-starch-Mw-110-150-kDa-生命科学试剂-MCE
- 2025年精密箱体系统项目合作计划书
- hCA-I-hCA-II-IN-1-生命科学试剂-MCE
- 2025年重水堆核电站及配套产品项目发展计划
- 2025广西来宾盛亿土地整治开发有限公司招聘拟聘人员模拟试卷及答案详解(历年真题)
- 2025年延安通和电业有限责任公司招聘(5人)模拟试卷及答案详解(夺冠)
- 技术方案编制与评审工具
- 2024年冀教新版三年级英语上册月考试卷含答案
- 社区十四五规划
- 《如何设计调查问卷》课件
- 幼儿园中班音乐《头发、肩膀、膝盖、脚》课件
- 液压与气压传动技术 课件 项目14 液压与气动系统的常见故障及案例分析
- 投标货物包装、运输方案
- 2024年广西公需科目参考答案
- 吉林房地产市场月报2024年08月
- 少儿美术课件国家宝藏系列《玉壶》
- GB/T 44670-2024殡仪馆职工安全防护通用要求
- 2024年孩子打架双方协商后协议书范文
评论
0/150
提交评论