图形运动专题.doc_第1页
图形运动专题.doc_第2页
图形运动专题.doc_第3页
图形运动专题.doc_第4页
图形运动专题.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图形运动专题1如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.2已知:如图(1),在平面直角坐标xOy中,边长为2的等边OAB的顶点B在第一象限,顶点A在x轴的正半轴上另一等腰OCA的顶点C在第四象限,OCAC,C120现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边OAB的边上(点A除外)存在点D,使得OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有MCN60,其两边分别与OB、AB交于点M、N,连接MN将MCN绕着C点旋转(0旋转角60),使得M、N始终在边OB和边AB上试判断在这一过程中,BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由3如图,已知抛物线yx2x4交x轴的正半轴于点A,交y轴于点B(1)求A、B两点的坐标,并求直线AB的解析式;(2)设P(x,y)(x0)是直线yx上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值ACBPQED图44如图16,在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值 5已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)求证:EG=CG;(2)将图中BEF绕B点逆时针旋转45,如图所示,取DF中点G,连接EG,CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由 (3)将图中BEF绕B点旋转任意角度,如图所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)DFBACE第24题图FBADCEG第24题图FBADCEG第24题图 6如图11,在ABC中,C=90,BC=8,AC=6,另有一直角梯形DEFH(HFDE,HDE=90)的底边DE落在CB上,腰DH落在CA上,且DE=4,DEF=CBA,AHAC=23(1)延长HF交AB于G,求AHG的面积.(2)操作:固定ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH(如图12).探究1:在运动中,四边形CDHH能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,ABC与直角梯形DEFH重叠部分的面积为y,求y与t的函数关系.7已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(第24题)(1)填空:菱形ABCD的边长是 、面积是 、 高BE的长是 ;(2)探究下列问题:若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求APQ的面积S关于t的函数关系式,以及S的最大值; 若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.24(本题12分)解:(1)5 , 24, 3分(2)由题意,得AP=t,AQ=10-2t. 1分如图1,过点Q作QGAD,垂足为G,由QGBE得 AQGABE,QG=, 1分(t5). 1分(t5).当t=时,S最大值为6.1分 要使APQ沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需APQ为等腰三角形即可.当t=4秒时,点P的速度为每秒1个单位,AP=.1分以下分两种情况讨论:第一种情况:当点Q在CB上时, PQBEPA,只存在点Q1,使Q1A=Q1P.如图2,过点Q1作Q1MAP,垂足为点M,Q1M交AC于点F,则AM=.由AMFAODCQ1F,得, ,. 1分CQ1=.则, .1分第二种情况:当点Q在BA上时,存在两点Q2,Q3,分别使A P= A Q2,PA=PQ3.若AP=AQ2,如图3,CB+BQ2=10-4=6.则,.1分 若PA=PQ3,如图4,过点P作PNAB,垂足为N,由ANPAEB,得. AE= , AN.AQ3=2AN=, BC+BQ3=10-则. 1分综上所述,当t= 4秒,以所得的等腰三角形APQ沿底边翻折,翻折后得到菱形的k值为或或.【分析】(1)要表示出ODE的面积,要分两种情况讨论,如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;如果点E在AB边上,这时ODE的面积可用长方形OABC的面积减去OCD、OAE、BDE的面积; (2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化【答案】(1)由题意得B(3,1)若直线经过点A(3,0)时,则b若直线经过点B(3,1)时,则b若直线经过点C(0,1)时,则b1若直线与折线OAB的交点在OA上时,即1b,如图25-a, 此时E(2b,0)SOECO2b1b若直线与折线OAB的交点在BA上时,即b,如图2此时E(3,),D(2b2,1)SS矩(SOCDSOAE SDBE ) 3(2b1)1(52b)()3()(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。本题答案由无锡市天一实验学校金杨建老师草制!由题意知,DMNE,DNME,四边形DNEM为平行四边形根据轴对称知,MEDNED又MDENED,MEDMDE,MDME,平行四边形DNEM为菱形过点D作DHOA,垂足为H,由题易知,tanDEN,DH1,HE2,设菱形DNEM 的边长为a,则在RtDHM中,由勾股定理知:,S四边形DNEMNEDH矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为解:(1)过点作于点(如图), , 在Rt中, (1分)()当时,,;过点作于点(如图) 在Rt中, 即 (3分) ()当时,(如图),即故当时,当时, (5分)(2)或或或 (9分)(3)的周长不发生变化延长至点,使,连结(如图),(10分) 又 (11分)的周长不变,其周长为4 (12分)解:(1)令,得,即,解得,所以令,得,所以设直线AB的解析式为,则,解得,所以直线AB的解析式为 5分(2)当点在直线AB上时,解得,当点在直线AB上时,解得所以,若正方形PEQF与直线AB有公共点,则 4分(3)当点在直线AB上时,(此时点F也在直线AB上),解得当时,直线AB分别与PE、PF有交点,设交点分别为C、D,此时,又,所以,从而,因为,所以当时,当时,直线AB分别与QE、QF有交点,设交点分别为M、N,此时,又,所以,即其中当时,综合得,当时, 5分AC)BPQD图3E)F26解:(1)1,; (2)作QFAC于点F,如图3, AQ = CP= t,由AQFABC, 得 ACBPQED图5AC(E)BPQD图6GAC(E)BPQD图7GACBPQED图4,即(3)能 当DEQB时,如图4 DEPQ,PQQB,四边形QBED是直角梯形 此时AQP=90由APQABC,得,即 解得 如图5,当PQBC时,DEBC,四边形QBED是直角梯形此时APQ =90由AQPABC,得 ,即 解得(4)或【注:点P由C向A运动,DE经过点C方法一、连接QC,作QGBC于点G,如图6,由,得,解得方法二、由,得,进而可得,得, 点P由A向C运动,DE经过点C,如图7,】24(本题满分10分)解:(1)证明:在RtFCD中, G为DF的中点, CG= FD1分同理,在RtDEF中, EG= FD 2分 CG=EG3分(2)(1)中结论仍然成立,即EG=CG4分证法一:连接AG,过G点作MNAD于M,与EF的延长线交于N点在DAG与DCG中, AD=CD,ADG=CDG,DG=DG, DAGDCG AG=CG5分在DMG与FNG中, DGM=FGN,FG=DG,MDG=NFG, DMGFNG MG=NG 在矩形AENM中,AM=EN 6分在RtAMG 与RtENG中, AM=EN, MG=NG, AMGENG AG=EG EG=CG 8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC, 4分在DCG 与FMG中,FG=DG,MGF=CGD,MG=CG,DCG FMGMF=CD,FMGDCG MFCDAB5分 在RtMFE 与RtCBE中, MF=CB,EF=BE,MFE CBE 6分MECMEFFECCEBCEF90 7分 MEC为直角三角形 MG = CG, EG= MC 8分(3)(1)中的结论仍然成立,即EG=CG其他的结论还有:EGCG10分(湖南2009年娄底市)25(12分)解:(1)AHAC=23,AC=6AH=AC=6=4又HFDE,HGCB,AHGACB1分=,即=,HG=2分SAHG=AHHG=4=3分(2)能为正方形4分HHCD,HCHD,四边形CDHH为平行四边形又C=90,四边形CDHH为矩形5分又CH=AC-AH=6-4=2当CD=CH=2时,四边形CDHH为正方形此时可得t=2秒时,四边形CDHH为正方形6分()DEF=ABC,EFAB当t=4秒时,直角梯形的腰EF与BA重合.当0t4时,重叠部分的面积为直角梯形DEFH的面积.7分过F作FMDE于M,=tanDEF=tanABC=ME=FM=2=,HF=DM=DE-ME=4-=直角梯形DEFH的面积为(4+)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论