北师大版选修22第五章数系的扩充与复数的引入.doc_第1页
北师大版选修22第五章数系的扩充与复数的引入.doc_第2页
北师大版选修22第五章数系的扩充与复数的引入.doc_第3页
北师大版选修22第五章数系的扩充与复数的引入.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章 数系的扩充与复数的引入课 题:数系的扩充教学目标(1)了解数的概念发展和数系扩充的过程,了解引进虚数单位的必要性和作用,体会数学发现和创造的过程,以及数学发生、发展的客观需求;(2)理解复数的基本概念以及复数相等的充要条件教学重点,难点:复数的基本概念以及复数相等的充要条件教学过程一问题情境1情境:1)数的概念的发展从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面解决实际问题的需要由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数)解方程的需要为了使方程有解,就引进了负数,数系扩充到了整数集;为了使方程有解,就要引进分数,数系扩充到了有理数集;为了使方程有解,就要引进无理数,数系扩充到了实数集 引进无理数以后,我们已经能使方程永远有解但是,这并没有彻底解决问题,当时,方程在实数范围内无解为了使方程有解,就必须把实数概念进一步扩大,这就必须引进新的数(可以以分解因式:为例)2问题:实数集应怎样扩充呢?二建构数学1为了使方程有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于的“新数”开始为此,我们引入一个新数,叫做虚数单位()并作如下规定:;实数可以与进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立在这种规定下,可以与实数相乘,再同实数相加得由于满足乘法交换律和加法交换律,上述结果可以写成 ()的形式2复数概念及复数集形如()的数叫做复数()全体复数构成的集合叫做复数集(),一般用字母来表示,即显然有n*nzqrc3复数的有关概念1) 复数的表示:通常用字母表示,即(),其中分别叫做复数的实部()与虚部();2)虚数和纯虚数复数(),当时,就是实数复数(),当时,叫做虚数()特别的,当,时,叫做纯虚数()3)复数集的分类分类要求不重复、不遗漏,同一级分类标准要统一根据上述原则,复数集的分类如下:4)两复数相等如果两个复数与()的实部与虚部分别相等,我们就说这两个复数相等即,(复数相等的充要条件),特别地:(复数为的充要条件)复数相等的充要条件,提供了将复数问题化归为实数问题来解决的途径5)两个复数不能比较大小:两个实数可以比较大小,但两个复数,如果不全是实数,只有相等与不等关系,不能比较它们的大小三数学运用1例题:例1写出下列复数的实部与虚部,并指出哪些是实数, 哪些是虚数,哪些是纯虚数 解: 的实部分别是;虚部分别是是实数;是虚数,其中是纯虚数例2实数取什么值时,复数是(1)实数? (2)虚数? (3)纯虚数?分析:由可知,都是实数,根据复数是实数、虚数和纯虚数的条件可以分别确定的值解:(1)当,即时,复数是实数; (2)当,即时,复数是虚数; (3)当,且,即时复数是纯虚数(变式引申):已知,复数,当为何值时:(1);(2)是虚数;(3)是纯虚数解:(1)当且,即时,是实数;(2)当且,即且时,是虚数;(3)当且,即或时,为纯虚数思考:是复数为纯虚数的充分条件吗?答:不是,因为当且时,才是纯虚数,所以是复数为纯虚数的必要而非充分条件例3已知,求实数的值 解:根据两个复数相等的充要条件,可得:,解得:(变式引申):已知,求复数解:设,则, 由复数相等的条件2练习:(1)已知复

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论