反比例函数的图像与性质教学设计.docx_第1页
反比例函数的图像与性质教学设计.docx_第2页
反比例函数的图像与性质教学设计.docx_第3页
反比例函数的图像与性质教学设计.docx_第4页
反比例函数的图像与性质教学设计.docx_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数的图像和性质(1)教学设计一、内容和内容解析本节课内容是在已经学习了平面直角坐标系和一次函数的基础上,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质反比例函数是最基本的初等函数之一,是学习后续各类函数的基础反比例函数的核心内容是反比例函数的概念、图象和性质反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在反比例函数的图象和性质,蕴含着丰富的数学思想首先,反比例函数图象和性质,本身就是“数”与“形”的统一体通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用再次,将函数中变量、之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐 标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后的再一次强化教材中呈现的“函数概念函数的图象和性质函数的实际应用”的结构,是学习初等函数时不可或缺的使学生理解这样的“同构现象”,对于明确学习任务,建立完善的认知结构也将是非常有意义的再有,用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析、的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律另外,利用图象“特征”确定函数“特性”,也是初中阶段研究函数性质的常用方法此外,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃图象由由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不折射出对函数概念本质属性认识的进一步深化因此,学好本节课内容将为今后的函数学习奠定坚实的基础教学重点:反比例函数的图象和性质二、目标和目标解析(一)教学目标1会画反比例函数图象,理解反比例函数的图象和性质2感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想根据反比例函数的图象探究其性质3培养学生的观察、分析、探究、归纳及概括能力(二)目标解析1本节教学内容的脉络是:先使用描点法画出反比例函数的图象,然后依据图象分析、探究、归纳得到函数的性质因此,准确画出反比例函数的图象,是探究反比例函数性质的前提此时,虽然学生已经学过用描点法画函数图象,但是由于反比例函数图象的特殊性,会画反比例函数的图象,仍是学习中的目标之一通过列表、描点、画出反比例函数的图象,进而观察、分析、探究、归纳、概括,得到反比例函数的性质,可以进一步加深对函数三种表示方法(列表法、解析式法和图象法)的理解;2数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个阶段,而非能复制与灌输在探究反比例函数性质时,让学生领悟到数形结合思想、转化思想、变化与对应思想的存在,并能运用这些数学思想观察、分析反比例函数的图象,探究、归纳、概括反比例函数的性质3通过对反比例函数性质探究,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,提高学生思维能力三、教学问题诊断分析对于用描点法画函数的图象,学生已经学过,但因当时处于函数学习的初始阶段,重点只是让学生掌握用描点法画函数图象的“三步曲(列表、描点、连线)”,所以,学生对每步要求的理解并不深刻因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量的取值缺乏代表性及忽略等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与轴、轴“越来越靠近”但不相交的趋势不易理解教学时,应注意有针对性的引导,注意从解析式的分析入手,让学生先进行“数”(,,)、“式”(解析式中、的反比例关系)的分析,进而过渡到对“形”(图象)的认识在学习一次函数的时候,学生已经历过观察、分析图象的特征,抽象、概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解、因此,通过类比,结合反比例函数的图象探究性质,从使用的方法上不会存在障碍,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,具有自身的特殊性,故对性质的深刻理解和掌握,对性质探究中的数学思想的体会和运用,还存在一定的困难教学中,应注重强调说明由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动教学难点:准确画出反比例函数的图象,理解反比例函数的性质,并能灵活应用四、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板软件为平台,绘制反比例函数图象,同时辅之以“点跟踪”等手段,通过动态的演示,观察相关数值的变化,研究图象的变化趋势,抽象概括当自变量变化时,对应的函数值的变化规律,进而探究反比例函数的性质五、教学过程设计(一)课前展示,知识链接请小主持人带领大家对跟本节课相关的知识梳理,这样的引入不仅调动了学生的积极性,同时又紧扣主题,为本节课的学习进行了方法上的准备。(二)知识链接,类比联想我会先出示本节课的教学目标.然后提出问题:反比例函数的解析式是什么呢?接着再问:学习了反比例函数的解析式,也就是从数的角度研究了反比例函数,那么对应的反比例函数的形的方面,也就是图象是什么?性质又是怎样的呢? (三)观察探究,形成新知为了充分体现学生自主探究的过程,我会引导学生分这样5步完成. 1试一试,学生独立画图,教师巡视指导. 以画出反比例函数的图象为例,教师引导学生经历列表、描点、连线的过程(1)列表:-6-5-4-3-2-1123456列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;(2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象2.议一议,小组内交流所画图象.3.看一看,学生展示所画图像,教师对错误图象归类呈现,引导学生分析错误原因,重点关注学生的数学语言是否准确,然后教师示范画法,在描点这一步,我借助多媒体再多描出6个点,这样学生就容易观察出这些点形成了两条平滑曲线,以突破本节课第一个难点.4.说一说:同桌互说一遍画图象时的注意事项,并修改已画图象.让学生独立画图,充分暴露存在问题,关注画图的基本步骤及每个细节的处理,通过动手操作、动眼观察、动口交流等系列活动,培养学生画图象的能力.通过再次画图,使学生及时巩固已获得的作图经验,并且为后面归纳性质增加感性认识,也使学生自然进入合作交流,探究性质的环节。我会鼓励学生从多个角度进行比较,培养学生的观察能力.学生通过观察找出反比例函数与的图象有什么共同特征?有什么不同点?是由什么决定的?师生活动:教师启发学生对比、思考,组织学生讨论,引导学生关注反比例系数“”的作用学生通过观察比较,总结这两个反比例函数图象的特征。这部分的探索我的设计意图是:在活动中,让学生自己去观察、发现、总结,实现学生主动参与,探究新知的目的使学生直观的感受这一类函数“形”的特征,经历由特殊到一般的知识生成过程,对反比例函数的图象和性质形成初步印象. 教师设问:k0时的函数图象和性质又是什么呢?此时出示探究3.让学生首先独立去观察、类比、发现,然后通过合作交流的方式总结k0时函数图象和性质,然后引导学生对反比例函数的图象和性质进行总结. 把问题交给学生,给他们充分的时间和空间去思考、去交流,不仅让学生感受到教师的信任,同时也培养了他们自主探究的习惯和团队合作的意识.这样的设计:不仅解决了课前提出的问题,前后呼应,同时对两种函数的图象和性质进行了对比,渗透了分类讨论的方法和类比的数学思想.这样既培养了学生观察能力,也让学生体会数学的对称美.总结反比例函数()图象的特征和性质教师帮助学生梳理、归纳,填写表格:函数图象形状图象位置图象变化趋势函数增减性【设计意图】通过归纳,培养学生抽象概括能力(三)巩固提高,应用新知课堂练习: 1下列图象中,可以是反比例函数的图象的是( )2已知反比例函数的图象如图所示,则 0, 且在图象的每一支上,值随的增大而 3. 已知反比例函数的图象过点(2,1),则它的图象在 象限,且 04. 若反比例函数()的图象上有两点(,),(,),且,则的值是( )(A)正数(B)负数(C)非正数(D)非负数【设计意图】通过一系列的练习,可以实现知识向能力的转化(四)归纳反思,深化新知问题8:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对反比例函数的图象和性质有一个较为整体、全面认识,同时,使学生养成良好的学习习惯布置作业:(1)基础达标:教材中练习的第1、2题,习题17.1的第3题;(2)反思提升:将反比例函数(为常数,)与正比例函数(为常数,)进行对比,可以从如下方面考虑:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?六、目标检测设计1反比例函数的图象在( )(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限2在同一直角坐标系中,函数与的图象大致是( )3写出一个反比例函数,使得该反比例函数的图象在第一、三象限,该函数可以是 ;若点在该函数的图象上,则点的坐标可以是 (分别写出一个即可)4若双曲线,当时,随的增大而增大,则的取值范围是 5已知反比例函数,(1)填写表格中相应的的值:-6-5-4-3-2-1123456(2)根据表中的数据,描点画出函数的图象6某住

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论