(5)苏科版初二暑假中考压轴题(一).doc_第1页
(5)苏科版初二暑假中考压轴题(一).doc_第2页
(5)苏科版初二暑假中考压轴题(一).doc_第3页
(5)苏科版初二暑假中考压轴题(一).doc_第4页
(5)苏科版初二暑假中考压轴题(一).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(5)初二中考压轴题1、(苏州)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3)点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动当这两点中有一点到达自己的终点时,另一点也停止运动(1)设从出发起运动了x s,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示,不要写出x的取值范围);(2)设从出发起运动了x s,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半试用含x的代数式表示这时点Q所经过的路程和它的速度;试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由yPB(14,3)OxC(4,3)A(14,0)1Q2、(吉林)已知:在RtABC中,C90, BCa cm,ACb cm,ba,且a、b是方程x 2(m1)x(m4)0的两根,AB5 , (1)求a和b;ACBACB(2)若ABC与ABC完全重合,当ABC固定不动,将ABC沿CA所在的直线向左以1 个单位长度/s的速度移动设移动x s后ABC与ABC的重叠部分的面积为y ,求y与x之间的函数关系式;几秒钟后两个三角形重叠部分的面积等于? 3、(白银)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)(1) 点A的坐标是_,点C的坐标是_; (2) 当t= 秒或 秒时,MN=AC;(3) 设OMN的面积为S,求S与t的函数关系式;(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由4、(07长沙)在平面直角坐标系中,一动点P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图)按一定方向运动。图是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.P (图) (图)(图)(1)s与之间的函数关系式是: ;(2)与图相对应的P点的运动路径是: ;P点出发 秒首次到达点B;(3)写出当3s8时,y与s之间的函数关系式,并在图中补全函数图象.5、(08长沙)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.6、(07郴州)如图10,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由图10(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 7、(08成都)已知:在梯形ABCD中,ADBC,AB = DC,E、F分别是AB和BC边上的点.(1)如图,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DFBC.若AD =4,BC=8,求梯形ABCD的面积的值;(2)如图,连接EF并延长与DC的延长线交于点G,如果FG=kEF(k为正数),试猜想BE与CG有何数量关系?写出你的结论并证明之.8、(08大连)如图251,正方形ABCD和正方形QMNP,M =B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E 求证:ME = MF 如图252,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明 如图253,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由根据前面的探索和图254,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由9、(08福州) 如图,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,判断BPQ的形状,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ? PBCADM10. 如图,菱形ABCD中,BAD=60 ,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为 11、(08广东)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC(1)求AEB的大小;BAODCE图8CBOD图7A(2)如图8,OAB固定不动,保持OCD的形状和大小不变,将OCD绕着点O旋转(OAB和OCD不能重叠),求AEB的大小.12、(08广东)将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD(1) 填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.(2) 请写出图9中所有的相似三角形(不含全等三角形).(3) 如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐EDCHFGBAPyx图1010标系,保持ABD不动,将ABC向轴的正方向平移到FGH的位置,FH与BD相交于点P,设AF=t,FBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.DCBAE图913、(08广州)如图11,在梯形ABCD中,ADBC,AB=AD=DC=2cm,BC=4cm,在等腰PQR中,QPR=120,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰PQR重合部分的面积记为S平方厘米(1)当t=4时,求S的值(2)当,求S与t的函数关系式,并求出S的最大值图1114、(08哈尔滨)在矩形ABCD中,点E是AD边上一点,连接BE,且ABE30,BEDE,连接BD点P从点E出发沿射线ED运动,过点P作PQBD交直线BE于点Q(1) 当点P在线段ED上时(如图1),求证:BEPDPQ; (2)若 BC6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);(3)在的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PFQC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长。15、(08湖州)已知:在矩形中,分别以所在直线为轴和轴,建立如图所示的平面直角坐标系是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由16、(08怀化)如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证:(1);(2)17、(08黄冈)已知:如图,在直角梯形中,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点从点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒(1)求直线的解析式;(2)若动点在线段上移动,当为何值时,四边形的面积是梯形面积的?(3)动点从点出发,沿折线的路线移动过程中,设的面积为,请直接写出与的函数关系式,并指出自变量的取值范围;ABDCOxy(4)当动点在线段上移动时,能否在线段上找到一点,使四边形为矩形?请求出此时动点的坐标;若不能,请说明理由ABDCOPxyABCDFEM18、(08黄石)如图,为直角,点为线段的中点,点是射线上的一个动点(不与点重合),连结,作,垂足为,连结,过点作,交于(1)求证:;(2)在什么范围内变化时,四边形是梯形,并说明理由;(3)在什么范围内变化时,线段上存在点,满足条件,并说明理由19、(08鸡西)已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点当绕点旋转到时(如图1),易证(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明BBMBCNCNMCNM图1图2图3AAADDD(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想20、(08济宁)中,cm长为1cm的线段在的边上沿方向以1cm/s的速度向点运动(运动前点与点重合)过分别作的垂线交直角边于两点,线段运动的时间为s(1)若的面积为,写出与的函数关系式(写出自变量的取值范围);(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;(3)为何值时,以为顶点的三角形与相似?21、(08鸡西)如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足(1)求点,点的坐标(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由22、(08金华)如图1,在平面直角坐标系中,己知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把AOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ABD。(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由。23、在中,另有一等腰梯形()的底边与重合,两腰分别落在上,且分别是的中点(1)求等腰梯形的面积;(2)操作:固定,将等腰梯形以每秒1个单位的速度沿方向向右运动,直到点与点重合时停止设运动时间为秒,运动后的等腰梯形为(如图15)探究1:在运动过程中,四边形能否是菱形?若能,请求出此时的值;若不能,请说明理由FGABDCE探究2:设在运动过程中与等腰梯形重叠部分的面积为,求与的函数关系式24、如图,等腰梯形ABCD中,AB=4,CD=9,C=60,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x,问当x为何值时PDQ的面积达到最大,并求出最大值;(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.25、(08南通)如图,四边形ABCD中,ADCD,DABACB90,过点D作DEAC,垂足为F,DE与AB相交于点E(1)求证:ABAFCBCD;ABCDEFP(2)已知AB15 cm,BC9 cm,P是射线DE上的动点设DPx cm(),四边形BCDP的面积为y cm2求y关于x的函数关系式;当x为何值时,PBC的周长最小,并求出此时y的值26、(08宁德)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE 求证:CECF; 在图1中,若G在AD上,且GCE45,则GEBEGD成立吗?为什么? 运用解答中所积累的经验和知识,完成下题:B CA D E 如图2,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC12,E是AB上一点,且DCE45,BE4,求DE的长B CA G D FE 图2图127、(08宁夏)如图,边长为4的正方形中,点在上从向运动,连接交于点(1)试证明:无论点运动到上何处时,都有;(2)当点在上运动到什么位置时,的面积是正方形面积的;(3)若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点 运动到什么位置时,恰为等腰三角形28、(08莆田)已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:,请你探究:当点P分别在图(2)、图(3)中的位置时,又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论答:对图(2)的探究结论为_ 对图(3)的探究结论为_证明:如图(2)29、(08山西) 如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒()。(1)求直线的解析式。(2)设PCQ的面积为S,请求出S关于t的函数关系式。(3)试探究:当t为何值时,PCQ为等腰三角形?AQCPB图AQCPB图30、(08青岛)已知:如图,在中,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由31、(南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。请探究:(1)线段AE与CG是否相等?请说明理由:(2)若设,当取何值时,最大?(3)连接BH,当点E运动到AD的何位置时,BEHBAE? 32、(06惠安)如图,点O是边为2的正方形ABCD的中心,点E从A点开始沿AD边运动,点F从D点开始沿AD边运动,并且AE=DE。(1) 求正方形ABCD的对角线AC的长;(2) 若点E、F同时运动,连结O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论