




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.2 同角三角函数的基本关系一、教学目标:知识与技能:(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.过程与方法:由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.情感、态度与价值观通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二重点难点重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点:根据角终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、教材与学情分析 与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin24+cos24=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tan中的是使得tan有意义的值,即k+,kz. 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.四、教学方法 问题引导,主动探究,启发式教学五、教学过程导入新课与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化oxypm1a(1,0)新知探究 探究1:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗? 如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.根据三角函数的定义,当时,有.这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.学以致用例1 已知sin=,并且是第二象限的角,求cos,tan的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin2+cos2=1,故cos的值最容易求得,在 求cos时需要进行开平方运算,因此应根据角所在的象限确定cos的符号,在此基础上教师指导学生独立地完成此题.解:因为sin2+cos2=1,所以cos2=1-sin2=1-()2=.又因为是第二象限角,所以cos0.于是cos=,从而tan=()=.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tan=中的负号来自是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cos=,求sin,tan的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cos0是不能确定角的终边所在的象限,它可能在x轴的负半轴上(这时cos=-1). 解:因为cos0,因此=cos80=cos80,此题不难,让学生独立完成.解:原式=cos80. 点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练2化简:答案:cos40-sin40.点评:提醒学生注意:12sincos=sin2+cos22sincos=(sincos)2,这是一个很重要的结论.六、课堂小结由学生回顾本节所学的方法知识:同角三角函数的基本关系式及成立的条件,根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出). “知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辽宁沈阳城市建设投资集团有限公司所属企业沈阳城投新能源集团有限公司招聘7人模拟试卷含答案详解
- 2025贵州罗甸县第一医共体板庚分院招聘合同制专业技术人员考前自测高频考点模拟试题及答案详解(有一套)
- 2025江苏苏州市相城市政建设投资(集团)有限公司人员招聘考前自测高频考点模拟试题及答案详解1套
- 2025黑龙江佳木斯市建三江湿地机场消防应急救援大队招聘消防车司机1人模拟试卷及1套参考答案详解
- 2025年黑龙江省交通投资集团有限公司招聘95人考前自测高频考点模拟试题完整答案详解
- 2025年山东聊城市“水城优才·事编企用”储备产业人才引进考前自测高频考点模拟试题及答案详解(典优)
- 广西职称考试题库及答案
- 早教机构考试题库及答案
- 医疗招聘考试题库及答案
- 采煤考试题库及答案
- 脾功能亢进诊疗规范内科学诊疗规范诊疗指南2023版
- 25手术室护理实践指南
- 灌胶机作业指导书
- 日语的拨音促音和长音
- 门诊质量控制指标
- 机械工程学科课件
- 公共教育学试题10套 答案
- 英语文章 the giver每章概述
- 二年级上册数学乘法练习题
- 不锈钢楼梯扶手制作安装合同
- 生产车间现场管理(经典)
评论
0/150
提交评论