人教A版选修21 1.4 全称量词与存在量词 课件(17张).pptx_第1页
人教A版选修21 1.4 全称量词与存在量词 课件(17张).pptx_第2页
人教A版选修21 1.4 全称量词与存在量词 课件(17张).pptx_第3页
人教A版选修21 1.4 全称量词与存在量词 课件(17张).pptx_第4页
人教A版选修21 1.4 全称量词与存在量词 课件(17张).pptx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 4全称量词与存在量词 1 理解全称量词与存在量词的意义 会判断一个含有量词的全称命题 特称命题的真假 2 能正确地对含有一个量词的命题进行否定 理解全称命题与特称命题之间的关系 1 短语 所有的 任意一个 等在逻辑中通常叫做全称量词 并用符号 表示 含有全称量词的命题叫做全称命题 短语 存在一个 至少有一个 等在逻辑中通常叫做存在量词 用符号 表示 含有存在量词的命题叫做特称命题 做一做1 下列命题中含有全称量词的是 a 至少有一个自然数是2的倍数b 存在小于零的整数c 方程3x 2有实数根d 无理数是小数答案 d 2 全称命题 对m中任意一个x 有p x 成立 可用符号 x m p x 表示 读作 对任意x属于m 有p x 成立 特称命题 存在m中的元素x0 使p x0 成立 可用符号 x0 m p x0 表示 读作 存在m中的一个元素x0 使p x0 成立 归纳总结全称命题中的全称量词表明给定范围内的所有对象都具有某一性质 无一例外 而特称命题中的存在量词却表明给定范围内的对象有例外 两者正好构成相反意义的表述 做一做2 下列语句是特称命题的是 a 整数n是2和7的倍数b 存在整数n 使n能被11整除c x 7d x m p x 成立解析 b选项中有存在量词 存在 故b项是特称命题 a和c不是命题 d是全称命题 答案 b 3 含有一个量词的命题的否定 1 全称命题p x m p x 它的否定 p x0 m p x0 是特称命题 2 特称命题p x0 m p x0 它的否定 p x m p x 是全称命题 答案 d 做一做3 2 已知命题p x r sinx 1 则 p是 解析 全称命题的否定为特称命题 则 p x0 r sinx0 1 答案 x0 r sinx0 1 1 全称命题与特称命题的真假剖析 要判定一个全称命题是真命题 必须对限定集合m中的每一个元素x验证p x 成立 但要判定一个全称命题是假命题 却只需找出集合m中的一个x x0 使得p x0 不成立即可 这就是我们常说的 举出一个反例 要判定一个特称命题为真命题 只要在限定集合m中 至少能找到一个x x0 使得p x0 成立即可 否则 这一特称命题就是假命题 2 含有一个量词的命题的否定剖析 全称命题和特称命题的否定 其模式是固定的 即先把相应的全称量词改为存在量词 存在量词改为全称量词 再对命题结论进行否定 熟练地掌握下列常用词语的否定 对写出含有一个量词的命题的否定有很大帮助 归纳总结在实际应用中 若从正面证明全称命题 x m p x 是真命题不容易 可证明它的否定 x0 m p x0 是假命题 反之亦然 题型一 题型二 题型三 题型四 全称命题与特称命题的辨析 例1 判断下列命题是全称命题还是特称命题 1 负数没有对数 2 至少有一个整数 它既能被2整除 又能被5整除 3 x x x是无理数 x2是无理数 4 x0 x x z log2x0 0 分析 1 虽然表面看并不含量词 但从意义上来理解却含有 全部 所有的 这样的意思 2 3 4 明显含有量词 解 1 和 3 为全称命题 2 和 4 为特称命题 题型一 题型二 题型三 题型四 变式训练1 判断下列语句是全称命题 还是特称命题 1 凸多边形的外角和等于360 2 有些实数a b能使 a b a b 解 1 可以改写为 所有的凸多边形的外角和等于360 是全称命题 2 含有存在量词 有些 故是特称命题 3 含有全称量词 任意 故是全称命题 题型一 题型二 题型三 题型四 判断全称命题与特称命题的真假 例2 已知命题 p1 函数y 2x 2 x在r上为增函数 p2 函数y 2x 2 x在r上为减函数 则在命题q1 p1 p2 q2 p1 p2 q3 p1 p2和q4 p1 p2 中 真命题是 a q1 q3b q2 q3c q1 q4d q2 q4解析 p1为真 p2为假 则q1为真 q2为假 q3为假 q4为真 答案 c反思要判定一个全称命题是真命题 需要对限定集合中每一个元素验证其成立 但要判定一个特称命题为真命题 只要在限定集合中找到一个元素说明其成立即可 题型一 题型二 题型三 题型四 变式训练2 判断下列命题的真假 1 存在一个函数 既是偶函数又是奇函数 2 每一条线段的长度都能用正有理数来表示 题型一 题型二 题型三 题型四 对含有一个量词的命题的否定 例3 写出下列命题的否定 并判断其真假 1 有些质数是奇数 2 所有二次函数的图象都开口向上 4 不论m取何实数 方程x2 2x m 0都有实数根 分析 先判断命题是全称命题还是特称命题 再写出它的否定 题型一 题型二 题型三 题型四 解 1 有些质数是奇数 是特称命题 其否定为 所有质数都不是奇数 假命题 2 所有二次函数的图象都开口向上 是全称命题 其否定为 有些二次函数的图象不是开口向上 真命题 3 其否定为 x q x2 5 真命题 4 不论m取何实数 方程x2 2x m 0都有实数根 是全称命题 其否定为 存在实数m 使得方程x2 2x m 0没有实数根 真命题 反思在含有一个量词的命题的否定中 全称命题的否定是特称命题 特称命题的否定是全称命题 注意有些原命题无关键量词 但隐含着其含义 要注意辨析 题型一 题型二 题型三 题型四 变式训练3 写出下列命题的否定 并判断真假 1 任何一个平行四边形的对边都平行 2 梯形的对角线相等 3 有的四边形没有外接圆 分析 本题主要考查全称命题与特称命题的否定 可先将命题写成较明显 易理解的形式 再对一些关键词语进行否定 题型一 题型二 题型三 题型四 解 1 命题的否定 存在一个平行四边形的对边不都平行 由平行四边形的定义知 这是假命题 2 命题的否定 有些梯形的对角线不相等 因为直角梯形的对角线不相等 所以是真命题 3 命题的否定 所有四边形都有外接圆 因为只有对角互补的四边形才有外接圆 所以原命题为真 命题的否定为假命题 所以原命题为真 命题的否定为假命题 题型一 题型二 题型三 题型四 易错辨析易错点因对量词的否定不当致错 例4 某科学家在试验室种下了三颗种子 他预测 1 三颗种子都发芽 2 三颗种子至少有两颗发芽 请分别给出 1 和 2 的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论