




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 6微积分基本定理 第一章导数及其应用 学习目标 1 直观了解并掌握微积分基本定理的含义 2 会利用微积分基本定理求函数的积分 问题导学 达标检测 题型探究 内容索引 问题导学 知识点一微积分基本定理 牛顿 莱布尼茨公式 梳理 1 微积分基本定理 条件 f x 是区间 a b 上的连续函数 并且 f x f x f b f a f b f a 2 常见的原函数与被积函数关系 知识点二定积分和曲边梯形面积的关系 思考定积分与曲边梯形的面积一定相等吗 答案当被积函数f x 0恒成立时 定积分与曲边梯形的面积相等 若被积函数f x 0不恒成立 则不相等 梳理设曲边梯形在x轴上方的面积为s上 在x轴下方的面积为s下 则 s上 s下 s上 s下 0 1 若f x f x 则f x 唯一 2 微积分基本定理中 被积函数f x 是原函数f x 的导数 3 应用微积分基本定理求定积分的值时 被积函数在积分区间上必须是连续函数 思考辨析判断正误 题型探究 类型一求定积分 命题角度1求简单函数的定积分例1计算下列定积分 解答 1 e1 0 e0 e 解答 ln2 3sin2 ln1 3sin1 ln2 3sin2 3sin1 解答 3 解答 解 x 3 x 4 x2 7x 12 反思与感悟 1 当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式 便于求得原函数f x 2 由微积分基本定理求定积分的步骤第一步 求被积函数f x 的一个原函数f x 第二步 计算函数的增量f b f a 解答 跟踪训练1计算下列定积分 解答 sinx 1 2 解 解答 解答 命题角度2求分段函数的定积分 解答 反思与感悟分段函数定积分的求法 1 利用定积分的性质 转化为各区间上定积分的和计算 2 当被积函数含有绝对值时 常常去掉绝对值号 转化为分段函数的定积分再计算 解析 答案 2e 2 e0 e1 e1 e0 2e 2 解答 类型二利用定积分求参数 解析 答案 3 解得t 3或 2 t 0 t 3 解析 答案 解答 引申探究 解答 反思与感悟 1 含有参数的定积分可以与方程 函数或不等式综合起来考查 先利用微积分基本定理计算定积分是解决此类综合问题的前提 2 计算含有参数的定积分 必须分清积分变量与被积函数f x 积分上限与积分下限 积分区间与函数f x 等概念 解析 答案 0 2 f x 的值域为 0 2 解析 答案 达标检测 1 2 3 4 5 解析 答案 解得a 2 a 5b 4c 3d 2 2 等于 1 2 3 4 5 解析 答案 1 2 3 4 5 解析 答案 解析 f x xn mx的导函数f x 2x 2 nxn 1 m 2x 2 解得n 2 m 2 f x x2 2x 则f x x2 2x 答案 解析 1 2 3 4 5 解答 1 2 3 4 5 取f1 x 2x2 2 x 则f1 x 4x 2 取f2 x sinx 则f2 x cosx 所以 2x2 2 x sinx 1 2 3 4 5 1 求定积分的一些常用技巧 1 对被积函数 要先化简 再求积分 2 若被积函数是分段函数 依据定积分 对区间的可加性 分段积分再求和 3 对于含有绝对值符号的被积函数 要去掉绝对值符号才能积分 2 由于定积分的值可取正值 也可取负值 还
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全国企业《薪酬管理》规范制度试题库与答案
- 摄影课件拍摄角度
- 摄影知识基础知识培训班课件
- 吉林省长春市榆树市2024-2025学年八年级上学期期末语文试题(解析版)
- 摄影基础知识培训课件小结
- 生物技术联赛试题及答案
- 2025关于标准购销合同的范本
- 2025物流服务合同示范文本
- 2025关于租赁合同与买卖合同的区别
- 2025年租赁农户承包土地协议
- 营销策划 -洋酒品牌轩尼持深圳快闪店小红书营销方案
- ORT测试管理办法
- 卒中护理人文关怀
- 污水厂人员考核方案
- 年画宝宝活动方案
- 肢体无力护理查房
- SPD物资管理制度
- 反假货币管理培训课件
- 厂区安全警报设备管理制度
- 云南辅警笔试题目及答案
- T/CCIAS 009-2023减盐酱油
评论
0/150
提交评论