人教A版选修23 组合的应用 学案.doc_第1页
人教A版选修23 组合的应用 学案.doc_第2页
人教A版选修23 组合的应用 学案.doc_第3页
人教A版选修23 组合的应用 学案.doc_第4页
人教A版选修23 组合的应用 学案.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时组合的应用学习目标1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题知识点组合的特点思考组合的特征有哪些?梳理(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m次不放回地取出(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合类型一有限制条件的组合问题例1男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)既要有队长,又要有女运动员反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关(2)要注意两个基本原理的运用,即分类与分步的灵活运用,在分类和分步时,一定要注意有无重复或遗漏跟踪训练1在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加类型二与几何有关的组合应用题例2如图,在以ab为直径的半圆周上,有异于a,b的六个点c1,c2,c6,线段ab上有异于a,b的四个点d1,d2,d3,d4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含c1点的有多少个?(2)以图中的12个点(包括a,b)中的4个点为顶点,可作出多少个四边形?反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算常用直接法,也可采用间接法(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题 解决跟踪训练2空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,四点共面,则以这些点为顶点,共可构成四面体的个数为_类型三分组、分配问题例3有6本不同的书,按下列分配方式分配,则共有多少种不同的分配方式?(1)分成三组,每组分别有1本,2本,3本;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3)分成三组,每组都是2本;(4)分给甲、乙、丙三人,每人2本反思与感悟分组、分配问题的求解策略(1)分组问题属于“组合”问题,常见的分组问题有三种完全均匀分组,每组的元素个数均相等部分均匀分组,应注意不要重复,若有n组均匀,最后必须除以n!.完全非均匀分组,这种分组不考虑重复现象(2)分配问题属于“排列”问题分配问题可以按要求逐个分配,也可以分组后再分配跟踪训练3某宾馆安排a、b、c、d、e五人入住3个房间,每个房间至少住1人,且a,b不能住同一房间,则不同的安排方法有_种例4将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子反思与感悟相同元素分配问题的处理策略(1)隔板法 如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法隔板法专门解决相同元素的分配问题(2)将n个相同的元素分给m个不同的对象(nm),有c种方法可描述为n1个空中插入m1块板跟踪训练4某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有_种1甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有_种2把三张游园票分给10个人中的3人,分法有_种3某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐 (1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭则每天不同午餐的搭配方法共有_种4直角坐标平面xoy上,平行直线xn(n0,1,2,5)与平行直线yn(n0,1,2,5)组成的图形中,矩形共有_个5要从12人中选出5人参加一次活动,其中a,b,c三人至多两人入选,则有_种不同选法1无限制条件的组合应用题的解题步骤(1)判断(2)转化(3)求值(4)作答2有限制条件的组合应用题的分类(1)“含”与“不含”问题 这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般 讲,特殊要先满足,其余则“一视同仁”若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准(2)几何中的计算问题 在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题 解决(3)分组、分配问题 分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的答案精析问题导学知识点思考组合取出的元素是无序的题型探究例1解(1)第一步 选3名男运动员,有c种选法;第二步 选2名女运动员,有c种选法,故共有cc120(种)选法(2)方法一(直接法)“至少有1名女运动员”包括以下几种情况,1女4男,2女3男,3女2男,4女1男由分类计数原理知共有cccccccc246(种)选法方法二(间接法)不考虑条件,从10人中任选5人,有c种选法,其中全是男运动员的选法有c种,故“至少有1名女运动员”的选法有cc246(种)(3)当有女队长时,其他人选法任意,共有c种选法;不选女队长时,必选男队长,共有c种选法,其中不含女运动员的选法有c种,故不选女队长时共有cc种选法所以既有队长又有女运动员的选法共有ccc191(种)跟踪训练1解(1)从中任取5人是组合问题,共有c792(种)不同的选法(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有c36(种)不同的选法(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有c126(种)不同的选法(4)甲、乙、丙三人只能有1人参加,可分为两步 先从甲、乙、丙中选1人,有c种选法,再从另外9人中选4人,有c种选法,共有cc378(种)不同的选法例2解(1)方法一可作出三角形ccccc116(个)方法二可作三角形cc116(个),其中以c1为顶点的三角形有cccc36(个)(2)可作出四边形ccccc360(个)跟踪训练2205解析方法一可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总个数为cccccccc205.方法二从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为cc205.例3解(1)分三步 先选一本有c种选法,再从余下的5本中选两本有c种选法,最后余下的三本全选有c种选法由分步计数原理知,分配方式共有ccc60(种)(2)由于甲、乙、丙是不同的三个人,在(1)问的基础上,还应考虑再分配问题因此,分配方式共有ccca360(种)(3)先分三组,有ccc种分法,但是这里面出现了重复,不妨记六本书为a,b,c,d,e,f,若第一组取了a,b,第二组取了c,d,第三组取了e,f,则该种方法记为(ab,cd,ef),但ccc种分法中还有(ab,ef,cd),(cd,ab,ef),(cd,ef,ab),(ef,cd,ab),(ef,ab,cd),共a种情况,而这a种情况只能作为一种分法,故分配方式有15(种)(4)在(3)的基础上再分配即可,共有分配方式a90(种)跟踪训练3114解析5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种当为(3,1,1)时,有ca60(种),a,b住同一房间有ca18(种),故有601842(种)当为(2,2,1)时,有a90(种),a,b住同一房间有cca18(种),故有901872(种)根据分类计数原理共有4272114(种)例4解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有c10(种)(2)恰有一个空盒子,插板分两步进行先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如 0 000 00 ,有c种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如 0 000 00 ,有c种插法,故共有cc40(种)(3)恰有两个空盒子,插板分两步进行先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有c种插法,如 00 0000 ,然后将剩下的两块隔板插入形成空盒这两块板与前面三块板形成不相邻的两个盒子,如 00 0000 ,有c种插法将两块板与前面三块板之一并放,如 00 0000 ,有c种插法故共有c(cc)30(种)跟踪训练410解析第一类 当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论