




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2021高三数学北师大版(理):圆锥曲线含解析编 辑:_时 间:_“图形”引路,“斜率”搭桥高考示例方法与思维1.(20xx全国卷)在直角坐标系xOy中,曲线C:y与直线l:ykxa(a0)交于M,N两点(1)当k0时,分別求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?(说明理由)解(1)xya0和xya0.(步骤省略)(2)存在符合题意的点证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程,得x24kx4a0.故x1x24k,x1x24a.从而k1k2.【关键点1:建立斜率之间的关系】当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,【关键点2:把斜率间的关系转化为倾斜角之间的关系】故OPMOPN,所以点P(0,a)符合题意【点评】破解此类解析几何题的关键:一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速表示出直线方程;二是“转化”桥梁,即先把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论.2.(20xx全国卷)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G,证明:()PQG是直角三角形;解(1)由题设得,化简得1(|x|2),【关键点1:指明斜率公式中变量隐含的范围】所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点(2)设直线PQ的斜率为k,则其方程为ykx(k0)由得x.记u,则P(u,uk),Q(u,uk),E(u,0)于是直线QG的斜率为,方程为y(xu)由 得(2k2)x22uk2xk2u280.设G(xG,yG),则u和xG是方程的解,故xG,由此得yG.从而直线PG的斜率为.【关键点2:利用斜率之积为1说明线段PQ与PG的几何关系】所以PQPG,即PQG是直角三角形【点评】(1)求曲线的轨迹时务必检验几何图形的完备性,谨防增漏点;(2)几何关系的证明问题常转化为代数式的运算问题,此时常借助斜率公式、平面向量等实现数与形的转化.途径二“换元”转化,方便运算高考示例方法与思维(20xx全国卷)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G,()PQG是直角三角形;()求PQG面积的最大值()由()得|PQ|2u,|PG|,所以PQG的面积S|PQPG|.【关键点1:分子分母同除以k2】设tk,则由k0得t2,当且仅当k1时取等号【关键点2:整体代换,指明范围】因为S在2,)单调递减,所以当t2,即k1时,S取得最大值,最大值为.【关键点3:用活“对勾”函数及复合函数的单调性】因此,PQG面积的最大值为.【点评】基本不等式求最值的5种典型情况分析(1)s(先换元,注意“元”的范围,再利用基本不等式)(2)s(基本不等式)(3)s(基本不等式)(4)s(先分离参数,再利用基本不等式)(5)s(上下同时除以k2,令tk换元,再利用基本不等式).途径三性质主导,向量解题高考示例方法与思维(20xx全国卷)已知点A,B关于坐标原点O对称,|AB| 4,M过点A,B且与直线x20相切(1)若A在直线xy0上,求M的半径;(2)是否存在定点P,使得当A运动时,MAMP为定值?并说明理由.解(1)因为M过点A,B,所以圆心M在AB的垂直平分线上【关键点1:圆的几何性质】由已知A在直线xy0上,且A,B关于坐标原点O对称,【关键点2:圆的几何性质】所以M在直线yx上,故可设M(a,a)因为M与直线x20相切,所以M的半径为r|a2|.【关键点3:直线与圆相切的几何性质】由已知得|AO|2,又,【关键点4:圆的几何性质向量化】故可得2a24(a2)2,解得a0或a4.故M的半径r2或r6.(2)存在定点P(1,0),使得|MA|MP|为定值理由如下:设M(x,y),由已知得M的半径为r|x2|,|AO|2.由于,【关键点5:圆的几何性质向量化】故可得x2y24(x2)2,化简得M的轨迹方程为y24x.因为曲线C:y24x是以点P(1,0)为焦点,以直线x1为准线的抛物线,所以|MP|x1.因为|MA|MP|r|MP|x2(x1)1,所以存在满足条件的定点P.【点评】从本题可以看出,圆的几何性质与数量关系的转化涵盖在整个解题过程中,向量在整个其解过程中起了“穿针引线”的作用,用活圆的几何性质可以达到事半功倍的效果.途径四设而不求,化繁为简高考示例方法与思维(20xx全国卷)已知斜率为k的直线l与椭圆C:1交于A,B两点,线段AB的中点为M(1,m)(m0)(1)证明:k0)在椭圆1内,1,解得0m,故k.(2)由题意得F(1,0)设P(x3,y3),则(x31,y3)(x11,y1)(x21,y2)(0,0)由(1)及题设得x33(x1x2)1,y3(y1y2)2m0.【关键点2,设出点P,借助向量的建立变量间的关系,达到设而不求的目的】又点P在C上,所以m,从而P,|.于是|2.同理|2.所以|4(x1x2)3.故2|,即|,|,|成等差数列设该数列的公差为d,则2|d|x1x2|.将m代入得k1.所以l的方程为yx,代入C的方程,并整理得7x214x0.故x1x22,x1x2,代入解得|d|.【关键点3:借用根与系数的关系,达到设而不求的目的】所以该数列的公差为或.【点评】本题(1)涉及弦的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 循环经济视角下副产物资源化利用与甲基氯苯胺类化合物联产模式探索
- 开口凸轮轻量化设计与材料疲劳寿命预测的协同优化路径
- 建筑幕墙切割板表面微结构处理对光反射率与热应力控制的协同效应
- 废料处理与碳中和目标下的剪切余料再生技术经济性评估模型
- 药事管理与法规概述说课稿-2025-2026学年中职专业课-药事法规-药剂-医药卫生大类
- 2025年铁道专业常识题库及答案
- 第2课 无所不在、神通广大-信息技术应用教学设计-2025-2026学年小学信息技术(信息科技)第一册河北大学版(第2版)
- 美妆集合店品牌营销攻略:2025年营销策略与传播渠道研究
- 本单元复习与测试教学设计-2025-2026学年小学信息技术(信息科技)六年级上册青岛版(六三制)
- 2025无人机资格证考前冲刺练习试题附答案详解(能力提升)
- 5.2 轴对称(课件)数学苏教版三年级上册(新教材)
- 绘本社团课件
- 网络安全知识竞赛试题及答案
- 《新能源汽车概论》课件-项目一 新能源汽车的认知与发展趋势
- 煤矿作业规程编制课件
- DB11∕T 1135-2024 供热系统有限空间作业安全技术规程
- 泰戈尔简介课件
- 2025四川乐山市市中区国有企业招聘员工47人笔试参考题库附答案解析
- 新版部编人教版三年级上册语文全册1-8单元教材分析
- 2024年全国网络安全知识竞赛试题库及答案
- 公安机关人民警察执法资格(高级)考前点题卷一
评论
0/150
提交评论