免费预览已结束,剩余29页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一 复习引入 问题 两圆的位置关系有哪些 有五种 外离 外切 相交 内切 内含 从公共点的个数来分 可分为 无公共点 一个公共点 两个公共点 相交 思考 当两圆相离 外切 相交 内切 内含时 两圆半径与两圆的圆心距有什么关系 切点在两圆的连心线上 两圆有唯一公共点 两圆无公共点 内切或外切 外离或内含 连心线垂直平分公共线 我们可以通过什么样的步骤来判断这几种位置关系 第一步 计算两圆的半径r1 r2 第二步 计算两圆的圆心距d 第三步 根据d与r1 r2之间的关系 判断两圆的位置关系 例1 判断下列两圆的位置关系 1 x 2 2 y 2 2 1与 x 2 2 y 5 2 16 解 1 根据题意得 两圆的半径分别为和 两圆的圆心距 因为 所以两圆外切 解 将两圆的方程化为标准方程得 故两圆的半径分别为 两圆的圆心距 因为 所以两圆相交 2 x2 y2 6x 7 0与x2 y2 6y 27 0 变式 已知两圆 x 3 2 y 2 2 x 1 2 y 1 2 试求为何值时 两圆 1 有唯一公共点 分析 有唯一公共点两圆的位置关系是怎样的 内切或外切 变式 已知两圆 x 3 2 y 2 2 x 1 2 y 1 2 试求为何值时 两圆 1 有唯一公共点 相交 2 有两个公共点 变式 已知两圆 x 3 2 y 2 2 x 1 2 y 1 2 试求为何值时 两圆 1 有唯一公共点 2 有两个公共点 3 无公共点 外离或内含 点评 判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤 化成圆的标准方程 写出圆心和半径 计算两圆圆心的距离d 通过d r1 r2 r1 r2 的关系来判断两圆的位置关系或求参数的范围 必要时可借助于图形 数形结合 注意 两圆有唯一公共点 内切或外切 两圆无公共点 外离或内含 分析 外切 解法一 将圆化为标准方程 得 则圆心 半径为 所以经过此圆心和原点的直线方程为 设所求圆的方程为 由题可知 在此圆上 且圆心在直线上 则有 得 因此 所求圆的方程是 分析 解法二 将圆化为标准方程 得 则圆心 半径为 所以经过此圆心和原点的直线方程 因为在圆上 所以圆心在的垂直平分线上 即在直线上 由 得圆心为 3 3 半径为 因此 所求圆的方程是 变式 求半径为8且与圆切于原点的圆的方程 分析 外切或内切 点评 圆与圆相切是两圆位置关系中最为特殊的情况 利用两圆相切的性质 切点在两圆的连心线上 来求解 注意 两圆相切时 充分利用好图形分析出是外切还是内切 还是两者都可以 不能漏解 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 解 1 两圆方程相减得x 2y 4 0 即公共弦ab所在的直线方程为x 2y 4 0 小结 求两个圆的公共弦所在直线的方程就是将两个圆的方程相减 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 2 求弦ab的长度 解 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 2 求弦ab的长度 3 求以两圆公共弦为直径的圆的方程 解 例3 若两圆c1 x2 y2 2x 10y 24 0 c2 x2 y2 2x 2y 8 0相交于a b两点 1 求两圆公共弦ab所在的直线的方程 2 求弦ab的长度 3 求以两圆公共弦为直径的圆的方程 思考 1 求圆心在直线y x上 且经过a b两点的圆的方程 点评 涉及圆的弦长问题 一般都考虑利用半径 弦心距 半弦长构成的直角三角形求解 而不采取求出弦的两端点坐标 然后利用两点间的距离求解 方法技巧1 判断两个圆的位置关系常用圆心距d与两圆半径的和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术学院模特合同范本
- 酒店土建改造合同范本
- 维修协议合同范本模板
- 直播公司外包合同协议
- 阀门厂家采购合同范本
- 羊毛成品采购合同范本
- 美容项目购买合同范本
- 迁址通知转让合同范本
- 货物买卖合同结算协议
- 网签监管协议合同样本
- 登高车管理制度
- T-CEIA ESD1007-2024 锂离子电池生产静电防护要求
- 24秋国家开放大学《软件工程》形考任务1-4参考答案
- 2024-2025学年译林版七年级英语上学期期末复习 专题01 单项选择(语法类)100题 【考题猜想】
- 2024年G1工业锅炉司炉理论考试1000题及答案
- 教师教学能力比赛-钳工工艺与技能-六方螺母的制作电子教案
- 北京市西城区九年级数学学习探究诊断(下册)第二十七章相似
- 会计账册报表(非营利组织适用)
- 全国巾帼家政服务职业技能大赛(养老护理员)决赛备赛试题库(含答案)
- 五下音乐《银色的马车从天上来啦(简谱、五线谱)》课件
- 2024年山东省化学检验员技能竞赛参考试题库(附答案)
评论
0/150
提交评论