




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二用数学归纳法证明不等式举例 与正整数n有关的几个不等式 1 当n n n 5时 n2 1 x 0 n为大于1的自然数 那么有 1 x n 1 nx 当 是实数 并且满足 1或者 1 当 是实数 并且满足0 1 4 如果n n为正整数 个正数a1 a2 an的乘积a1a2 an 1 那么它们的和a1 a2 an n 思考辨析判断下列说法是否正确 正确的在后面的括号内画 错误的画 1 若n n 且n2 1 x 0 则 1 x 4 1 4x 探究一 探究二 规范解答 利用数学归纳法证明不等式分析 找准n0 看左边是多少项 从n k到n k 1时添了什么项 少了什么项 根据n k时的假设 从而证明当n k 1时不等式成立 探究一 探究二 规范解答 当n k 1时 不等式也成立 由 1 2 可知 对一切的n 2 且n n 不等式都成立 探究一 探究二 规范解答 反思感悟数学归纳法证明不等式的技巧1 证明不等式时 由n k到n k 1时的推证过程与证明等式有所不同 由于不等式中的不等关系 需要我们在证明时 对原式进行 放大 或者 缩小 才能使用到n k时的假设 因此需要认真分析 适当放缩 才能使问题简单化 这是利用数学归纳法证明不等式时常用的方法之一 2 数学归纳法的应用通常需要与数学的其他方法联系在一起 如比较法 放缩法 配凑法 分析法和综合法等 才能完成证明过程 探究一 探究二 规范解答 探究一 探究二 规范解答 利用数学归纳法证明数列中的不等式问题 分析 证明当n k 1时不等式成立的关键是利用好n k成立时的假设 以及当n k 1时不等式的恰当变形 探究一 探究二 规范解答 探究一 探究二 规范解答 反思感悟利用数学归纳法证明数列中的不等式问题的基本策略1 首先掌握好数学归纳法证明问题的基本步骤以及数列的有关知识 这是解决这类问题的基础 2 这类题型通常与数列的递推公式 通项公式有关 有时要证明的式子是直接给出 有时是根据条件从前几项入手 通过观察 猜想 归纳出一个式子 然后再用数学归纳法证明 证明过程中 注意递推关系式的利用以及正整数n的性质 探究一 探究二 规范解答 探究一 探究二 规范解答 不等式中的归纳 猜想 证明问题典例设f n nn 1 g n n 1 n n n 1 当n 1 2 3 4时 比较f n 与g n 的大小 2 根据 1 的结果猜测一个一般性结论 并加以证明 审题策略 对于 1 可逐一计算进行比较 对于 2 可在 1 的基础上进行归纳猜想 然后利用数学归纳法证明猜想 规范展示 解 1 当n 1时 nn 1 1 n 1 n 2 所以f 1 g 3 当n 4时 nn 1 1024 n 1 n 625 所以f 4 g 4 探究一 探究二 规范解答 2 由 1 可猜测 当n 3时f n g n 以下用数学归纳法证明该猜测 当n 3时 nn 1 81 n 1 n 64 所以f 3 g 3 所以猜测成立 假设当n k k 3 时猜测成立 即f n g n 即 k 1 k 2 k 2 k 1成立 亦即f n 1 g n 1 成立 因此当n k 1时猜测成立 由 知 当n 3时f n g n 成立 探究一 探究二 规范解答 答题模板 第1步 代入计算 逐一进行比较 得出具体结论 第2步 进行归纳猜想 得到一般性结论 第3步 证明初始值成立 第4步 假设当n k k 3 时 结论成立得到归纳假设 并变形 第5步 证明n k 1时结论成立 第6步 证得结论 探究一 探究二 规范解答 失误警示通过阅卷统计分析 发现造成失分的原因主要如下 1 第一问数据计算失误 得不出正确结果 2 第二问中不能正确地利用归纳并猜想得出一般性结论 3 用数学归纳法证明时 步骤不完整 4 证明当n k 1时结论成立时 不能正确地进行放缩 从而无法利用归纳假设致误 探究一 探究二 规范解答 12345 答案 c 12345 答案 c 12345 答案 8 12345 因此当n k 1时不等式成立 故原不等式对一切n 2 n n 均成立 12345 5 对于一切正整数n 先猜出使tn n2成立的最小自然数t 然后用数学归纳法证明 并证明不等式n n 1 lg 1 2 3 n 解 猜想当t 3时 对一切正整数n 使3n n2成立 证明 当n 1时 31 3 1 12 不等式成立 假设当n k k 1 时 3k k2成立 即3k k2 1 当n k 1时 3k 1 3 3k 3k 2 3k k2 2 k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025采购合同示范文本
- 合同范本模板哪里有
- 水塔上拆迁合同范本
- 2025新房购房合同范本新房买卖合同的合同范本
- 家电转卖维修合同范本
- 贵州茶叶合同范本
- 荒地补偿协议合同范本
- 瓦房扩建改造合同范本
- 出口长期供货合同范本
- 纸箱模具采购合同范本
- 08J333 建筑防腐蚀构造
- DL∕ T 802.7-2010 电力电缆用导管技术条件 第7部分:非开挖用改性聚丙烯塑料电缆导管
- 突发环境事件应急预案编制要点及风险隐患排查重点课件
- 香港朗文1A-6B全部单词(音标版)
- CJJ57-2012 城乡规划工程地质勘察规范
- 入厂燃料验收管理验收统一标准
- 2024年03月新疆乌鲁木齐海关所属事业单位招考聘用14人笔试历年典型考题及考点研判与答案解析
- DZ∕T 0273-2015 地质资料汇交规范(正式版)
- 临沧市市级单位遴选(选调)笔试真题2021
- 肿瘤放射治疗质量控制规范
- 2024年度企业社会责任报告模板
评论
0/150
提交评论