



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.3.1平面直角坐标系中的平移变换1理解平移的意义,深刻认识一个平移就对应一个向量2掌握平移公式,并能熟练运用平移公式简化函数的解析式基础初探1平移在平面内,将图形f上所有点按照同一个方向,移动同样长度,称为图形f的平移,若以向量a表示移动的方向和长度,也称图形f按向量a平移2平移变换公式设p(x,y),向量a(h,k),平移后的对应点p(x,y),则(x,y)(h,k)(x,y)或思考探究1求平移后曲线的方程的步骤是什么?【提示】步骤:(1)设平移前曲线上一点p的坐标为(x,y),平移后的曲线上对应点p的坐标为(x,y);(2)写出变换公式并转化为(3)利用上述公式将原方程中的x,y代换;(4)按习惯,将所得方程中的x,y分别替换为x,y,即得所求曲线的方程2在图形平移过程中,每一点都是按照同一方向移动同样的长度,你是如何理解的?【提示】其一,平移所遵循的“长度”和“方向”正是向量的两个本质特征,因此,从向量的角度看,一个平移就是一个向量其二,由于图形可以看成点的集合,故认识图形的平移,就其本质来讲,就是要分析图形上点的平移质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_解惑:_疑问2:_解惑:_疑问3:_解惑:_平移变换公式的应用点m(8,10)按a平移后的对应点m的坐标为(7,4),求a.【自主解答】由平移公式得解得即a(15,14)再练一题1把点a(2,1)按a(3,2)平移,求对应点a的坐标(x,y)【解】由平移公式得即对应点a的坐标(1,3).平移变换公式在圆锥曲线中的应用求双曲线4x29y216x54y290的中心坐标、顶点坐标、焦点坐标与对称轴方程、准线方程和渐近线方程【思路探究】把双曲线方程化为标准方程求解【自主解答】将方程按x,y分别配方成4(x2)29(y3)236,即1.令方程可化为1.双曲线1的中心坐标为(0,0),顶点坐标为(0,2)和(0,2),焦点坐标为(0,)和(0,),对称轴方程为x0,y0,准线方程为y,渐近线方程为0.根据公式可得所求双曲线的中心坐标为(2,3),顶点坐标为(2,5)和(2,1),焦点坐标为(2,3)和(2,3),对称轴方程为x2,y3,准线方程为y3,渐近线方程为0,即2x3y130和2x3y50.几何量a,b,c,e,p决定了圆锥曲线的几何形状,它们的值与圆锥曲线的位置无关,我们将其称为位置不变量再练一题2已知抛物线yx24x7.(1)求抛物线顶点的坐标;(2)求将这条抛物线平移到顶点与坐标原点重合时的函数解析式【导学号:98990018】【解】(1)设抛物线yx24x7的顶点o的坐标为(h,k),那么 h2,k3,即这条抛物线的顶点o的坐标为(2,3)(2)将抛物线yx24x7平移,使点o(2,3)与点o(0,0)重合,这种图形的变换可以看做是将其按向量平移得到的,设的坐标为(m,n),那么所以抛物线按(2,3)平移,平移后的方程为yx2. 真题链接赏析(教材第40页习题4.3第3题)写出抛物线y28x按向量(2,1)平移后的抛物线方程和准线方程将函数y2x的图象l按a(0,3)平移到l,求l的函数解析式【命题意图】本题主要考查平面直角坐标系中平移公式的运用【解】设p(x,y)为l的任意一点,它在l上的对应点p(x,y)由平移公式得将它们代入y2x中得到y32x,即函数的解析式为y2x3.1将点p(7,0)按向量a平移,得到对应点a(11,5),则a_.【答案】(4,5)2直线l:3x2y120按向量a(2,3)平移后的方程是_【导学号:98990019】【答案】3x2y03曲线x2y22x2y10的中心坐标是_【解析】配方,得(x1)2(y1)21.【答案】(1,1)4开口向上,顶点是(3,2),焦点到顶点距离是1的抛物线方程是_【解析】开口向上,焦点到顶点距离是1的抛物线的标准方程是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用期内用人单位能否与员工解除劳动合同5篇
- 金属毛坯加工合同
- 个人购房资金借款合同
- 借款合同延期补充协议(标准版)8篇
- 双方合作共赢的合同5篇
- 2025湖北恩施州公路管理局招聘3人笔试历年参考题库附带答案详解
- 2025年上半年度安徽矾山文旅投资运营有限公司社会招聘4人笔试历年参考题库附带答案详解
- 2025天津滨海新区某国有企业招聘笔试及笔试历年参考题库附带答案详解
- 2025年妇科手术操作规范性考核试卷答案及解析
- 2025年疼痛科患者镇痛方案选择模拟考试卷答案及解析
- 2025贵州贵阳市投资控股集团房地产置业有限公司招聘12人考试参考题库及答案解析
- 免疫细胞治疗安全性评价-第1篇-洞察及研究
- 车间师带徒管理办法
- 桥梁工程监理工作实施方案
- 2025年秋期新教材部编人教版一年级上册道德与法治教学计划+进度表
- 服装辅料基础知识培训
- 医院门诊急诊统筹管理方案
- 国家事业单位招聘2025农业农村部国际交流服务中心招聘拟聘用人员笔试历年参考题库附带答案详解
- 2025年AI技术在项目管理中的应用洞察报告
- 胃肠外科医生进修汇报
- 慢病健康宣教课件
评论
0/150
提交评论