




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
+说 课 稿二次函数图象与性质 黑河市第四中学说课教师:马明信2011-7-18尊敬的各位评委、各位老师:大家好!我是来自黑河市第四中学的数学教师马明信,今天我说课的题目是:北京师范大学出版社的义务教育课程标准实验教科书数学九年级(下)第二章第四节二次函数图象与性质。依据课程标准,贯穿新的理念,我将从以下几个方面谈谈我对教材的理解和设计。总体结构:一、教材的分析与处理二、学情分析三、教学方法四、学法分析五、教学流程:1、创设问题 复习反馈 2、动手操作 探究问题 3、练习反馈 巩固提高4、师生互动 课堂小结 5、作业布置、检查反馈一、教材的分析与处理(一)教材的内容、地位和作用在日常生活,参加生产和进一步学习的需要看,有关函数的知识是非常重要的。例如在讨论社会问题、经济问题时越来越多地运用数学的思想方法,函数的内容在其中有相当的地位,二次函数更是重中之重。本课的教学是在学生学过二次函数知识的基础上,运用图象变换的观点把二次函数y=ax的图象经过一定的平移变换,而得到二次函数 y=a(x-h) +k (h0,k0)的图象。本节课是二次函数的重要课节。(二)教学目标1、知识与技能:使学生掌握二次函数y=a(x-h) +k的图象的作法及性质,进一步了解二次函数y=a(x-h) +k (h0,k0)与二次函数y=ax(a0)图象的位置关系;2、过程与方法:通过引导学生作图、观察、分析进一步理解二次函数图象与性质;3、情感态度价值观:向学生渗透事物总是不断运动、变化和发展的观点;进一步培养学生数形结合的思想和动手操作能力。(三)教学重难点重点:掌握二次函数y=a(x-h) +k(h0,k0)图象的作法和性质;难点:二次函数y=ax的图象向二次函数y=a(x-h) +k(h0,k0)的图象的转化过程。二、学情分析在相关知识的学习过程中,学生已经经历了二次函数y=ax2和y=ax2+c的性质的探索过程,在探究过程中体会到了由特殊到一般的辩证规律,积累了解决数学问题的经验和方法。学生愿意动手操作,乐于和同伴交流意见,形成不同的意见,积极参加探索解决问题的活动,在活动中感受数学的严密性、严谨性。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 三、教学方法根据新课程标准,本节课设计时体现“问题情境创设建立数学模型解释、应用回顾、延伸”的教学理念。特别在探究时通过学生动手操作和教师课件演示,让学生经历了知识的形成、发展与应用的过程。本节主要采用自主探究与合作交流,及研究性学习的教学方法。四、学法分析在教学过程中,鼓励学生自主探究与合作交流,引导学生观察、猜想、验证、推理与交流等数学活动。关注学生个体差异,使不同的学生得到不同程度的发展,及时给予鼓励性评价;让学生主动参与,在活动中感悟,在问题中创造,在讨论中生成、发展。努力呈现有利于学生理解和掌握相关的知识和方法,形成良好的数学思维品质。五、教学流程:一、创设问题 复习反馈 1、展示学生作业:画出的二次函数 y=3x和y=3(x-1) 的图象。2、分析所画函数图象性质,填表。y=3xy=3x+2y=3(x-1) 开口方向对称轴顶点坐标最值3、教师课件演示、验证。、通过展示学生所画的函数图象及时检查反馈学生对已学的知识的掌握情况,运用类比的教学方法,降低起点,缩小步子,为学生顺利进入新知识做准备;、通过教师课件的演示,让学生能更直观地观察、分析到这几个函数图象的联系;、对学生作品的检查,发现好的作品还应给予鼓励性评价。二、动手操作 探究问题1、 用描点法画出函数y=3(x-1) 的函数图象;、根据所画出的函数图象,指出其开口方向、对称轴和顶点坐标;、通过观察分析指出函数图象与函数y=3x、y=3x+2、y=3(x-1)图象有什么关系。2、教师课件演示、验证;3、教师课件演示; 分别画出函数y=3x、y=3(x-1) 、和y=3(x-1) +2的图象,并通过平移、变换引导学生分析观察函数图象间的联系。4、例题分析 知识小结、请填写下表。、请归纳出函数图象是如何平移的。y=3(x-1)+3y=-3 (x+1)-3y=a(x-h)+k开口方向a0a0a0y=ax y=a(x-h) y=a(x-h) + k y=ax y=ax+k y=a(x-h) +k 通过学生动手画函数图象,给学生创设活动时间和空间,体现教师是主导,学生是主体的教学地位,让学生经历知识的发生、发展过程,并通过观察、分析、探索出函数图象的有关性质,培养学生数形给合的思想。教师通过进行课件演示,既调动课堂的学习气氛又能引导学生通过演示过程观察、分析,进一步验证、直观地得出函数图象的性质。利用课件演示,激发学生的学习兴趣,改变函数的解析式,通过图象的平移、变换观察函数图象间的关系,让学生体验、感受函数图象的性质取决各项系数的大小。通过分析、小组合作探究,引导学生完成对知识从特殊到一般的归纳,符合学生的认知规律,又缩小步子,从而培养学生分析问题和解决问题的能力,完成由实践上升到理论的这一认知过程。教师深入到小组的讨论中,关注学生的自主合作交流意识,鼓励学生用适当的语言表达和交流自己的学习体验和学习结果;关注学生在解决问题过程中表现出的差异,并注意学生的自我评价和小组互评。三、练习反馈 巩固提高1、函数y=-3(x+3)+5图象的开口方向 、对称轴 、顶点坐标 ;2、函数y=2(x-1)-1图象的开口方向 、对称轴 、顶点坐标 ;3、函数y= (x+1)-2图象的开口方向 、对称轴 、顶点坐标 ;4、函数y=-5(x-6) +7图象的开口方向 、对称轴 、顶点坐标 。5、函数y=3x图象向左平移2个单位得到的函数 图象;6、函数y=-3(x-2) -5的图象向右平移 个单位,再向上平移 单位得到函数y=-3(x+1)2+4的图象。通过练习,创设学生活动的机会,及时反馈知识的掌握情况,并能通过练习内化成学生的能力。教师巡回辅导,鼓励学生小组合作完成。四、师生互动 课堂小结函数y=a(x-h) +k的图象和开口方向、对称轴、顶点坐标、最值、增减性及与y=ax图象的位置关系?师生互动,鼓励学生自主地对二次函数的图象性质规律进行归纳,揭示二次函数的解析式与图象间的关系。五、作业布置、检查反馈A P48 习题2.4 3、4题. B P48 习题2.4 1、2题. 分层布置学生作业,及时反馈学生对本节课知识的掌握情况,让不同的学生得到不同的发展。数学是一门培养和发展人类的思维的学科。因此在教学设计中,本着 “问题探究反思提高”的过程,展开所要学习的数学主题,使学生在了解原有知识基础上,理解并掌握相应的学习内容。在以师生共同合作的原则下,展现获取知识和方法的思维过程,突出了探究、合作互动的学习方式。在知识学习过程中给学生留有充分的思考与交流的时间和空间,让学生经历了观察、猜测、交流、反思等活动,体现了学生对学习过程的经历和体验也是学习的目的的理念。在课件的设计时采用课件辅助教学,不仅给学生良好的视觉感受,而且极大的激发了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年虚拟现实行业虚拟现实与增强现实技术应用前景与发展研究报告
- 2025年网络科技行业区块链数字货币应用前景研究报告
- 2025年生物科技行业创新药品研发与市场前景研究报告
- 2025年电子制造业柔性电子技术前景展望研究报告
- 商场员工安全培训方案课件
- 2025年汽车行业智能交通系统发展前景研究报告
- 山东省2025年潍坊高密市面向“三支一扶”人员定向招聘事业单位工作人员笔试历年参考题库附带答案详解
- 商场保安员安全培训课件
- 国家事业单位招聘2025中国东航一二三航空有限公司校园招聘笔试历年参考题库附带答案详解
- 南江县2025上半年四川巴中市南江县县级机关事业单位考调(选聘)27人笔试历年参考题库附带答案详解
- 过敏反应的防治与治疗讲课件
- 2025至2030年中国石油石化装备制造行业市场现状分析及投资前景研判报告
- 物流运输规章管理制度
- 中药熏洗法试题及答案
- 土方消纳处置合同协议书
- T/CCS 075-2023煤矿柔性薄喷材料喷涂施工技术要求
- 严重多发伤处理的欧洲共识(2025)解读
- 住宿外出免责协议书
- 2023梅毒螺旋体血清学试验生物学假阳性处理专家共识
- 反洗钱知识培训
- 销售合规风险管理制度
评论
0/150
提交评论