


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小学奥数培优:以德为先 以礼育人 以知建树 以生为本 善学习 会思考 懂生活 知做人 勤实践 能创造第十九讲 最大公约数和最小公倍数 月 日 课次 专 题 知 识 简 述本讲重点解决与最大公约数和最小公倍数有关的另一类问题有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(ad,bd)1。证明:设ad=a1,bd=b1,那么aa1d,b=b1d。假设(a1,b1)1,可设(a1,b1)m(m1),于是有a1=a2m,b1b2m.(a2,b2是整数)所以a=a1da2md,bb1db2md。那么md是a、b的公约数。又m1,mdd。这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)1的假设是不正确的.所以只能是(a1,b1)=1,也就是(ad,bd)1。定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。例 题 解 析 例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数乙数=甲、乙两数的最大公约数两数的最小公倍数可得36乙数=4288,乙数=428836,解出 乙数=32解法2:因为甲、乙两数的最大公约数为4,则甲数=49,设乙数=4b1,且(b1,9)=1因为甲、乙两数的最小公倍数是288, 则 28849b1, b128836,解出 b18。所以,乙数=48=32。答:乙数是32。例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,ab。因为这两个数的最大公约数是21,故设a=21a1,b21b1,且(a1,b1)1。因为这两个数的最小公倍数是126,所以 126=21a1b1,于是 a1b1=6解出a1=1,b1=6;a1=2,b1=3 则a=211=21,b=216=126;或者a=212=42,b=213=63因此,这两个数的和为21126=147,或4263=105。例3 已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。解:设这两个自然数分别为a与b,ab.因为这两个自然数的最大公约数是5,故设a=5a1,b=5b1,且(a1,b1)=1,a1b1。因为 ab=50, 所以有5a1+5b1=50,a1+b1=10。满足(a1,b1)=1,a1b1的解有:a1=1,b1=9;或者a1=3,b1=7 所以a=51=5,b=59=45;或者a=53=15,b=57=35例4 已知两个自然数的积为240,最小公倍数为60,求这两个数。解:设这两个数为a与b,ab,且设(a,b)d,ada1,bdb1,其中(a1,b1)1。因为两个自然数的积=两数的最大公约数两数的最小公倍数,所以 240=d60解出 d4,a1=1,b1=9所以 a=4a1,b=4b1因为a与b的最小公倍数为60,所以 4a1b160,于是有a1b115a1=1,b1=15;或者a1=3,b1=5 所以a=41=4,b=415=60;或者a=43=12,b=45=20例5 已知两个自然数的和为54,它们的最小公倍数与最大公约数的差为114,求这两个自然数。解:设这两个自然数分别为a与b,ab,(a,b)d,ada1,bdb1,其中(a1,b1)1因为a+b54,所以da1+db1=54。于是有d(a1b1)54,因此,d是54的约数又因为这两个数的最小公倍数与最大公约数的差为114,所以da1b1-d=114于是有d(a1b1-1)=114,因此,d是114的约数故d为54与114的公约数。由于(54,114)6,6的约数有:1、2、3、6,根据定理3,d可能取1、2、3、6这四个值。如果d1,由d(a1+b1)54,有a1b1=54;又由d(a1b1-1)114,有a1b1=115。115=1115=523,但是1115=11654,523=2854,所以d1.如果d2,由d(a1b1)54,有a1+b1=27;又由d(a1b1-1)=114,有a1b1=58。58158229,但是1585927,2+293127,所以d2。如果d=3,由d(a1b1)=54,有a1+b118;又由d(a1b1-1)=114,有a1b1=39。39139313,但是1394018,3131618,所以d3。如果d=6,由d(a1b1)=54,有a1b1=9;又由d(a1b1-1)=114,有a1b1=20。20表示成两个互质数的乘积有两种形式:20=12045,虽然120=219,但是有459,所以取d6是合适的,并有a1=4,b15。a6424,b6530。例6 已知两个自然数的差为4,它们的最大公约数与最小公倍数的积为252,求这两个自然数。解:设这两个自然数分别为a与b,且ab,ada1,b=db1,(a1,b1)1。因为a-b=4,所以da1-db1=4,于是有d(a1-b1)=4,因此d为4的约数。因为这两个自然数的最大公约数与最小公倍数的积为252,所以dda1b1252,于是有d2a1b1=(23)27,因此d为23的约数。故d为4与23的公约数。由于(4,23)2,2的约数有1和2两个,所以d可能取1、2这两个值。如果d=1,由d(a1-b1)=4,有a1-b1=4;又由d2a1b1=252,有a1b1=252。252表示成两个互质数的乘积有4种形式:252=1252=463=736928,但是252-12514,63-4594,36-7=294,28-9194,所以d1。如果d=2,由d(a1-b1)=4,有a1-b1=2;又由d2a1b1252,有a1b1=63。63表示为两个互质数的乘积有两种形式:63163=79,但63-1622,而9-72,且(9,7)=1,所以d=2,并且a19,b17。因此a=2918,b2714。 在例2例5的解答中之所以可以在假设中排除a=b这种情形(在各例中都只假设了ab),分别是由于:例2和例5,若ab,则(a,b)a,ba,与条件(a,b)a,b矛盾;例3,若a=b,则ab=(a,b)=5,因此ab1050,与条件矛盾;例4,ab=240不是平方数。从例题的解答中可以看出,在处理涉及两数的最大公约数或者最小公倍数的很多问题中,经常用到的基本关系是:若两数为a、b,那么a=a1d,bb1d,其中d=(a,b),(a1,b1)1,因此a,bda1b1,有时为了确定起见,可设ab.对于很多情形,可以排除a=b的情形(如上述所示),而只假设ab.练习巩固1.已知某数与24的最大公约数为4,最小公倍数为168,求此数。2.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数。3.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。4.已知两个自然数的差为48,它们的最小公倍数为60,求这两个数。5.已知两个自然数的差为30,它们的最小公倍数与最大公约数的差为450,求这两个自然数。6.已知两个自然数的平方和为900,它们的最大公约数与最小公倍数的乘积为432,求这两个自然数。练习答案1.此数为28。2.这两个数为4与120,或8与60,或12与40,或20与24。3.所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。4.所求的两个数为60与12。5.所求的两个数为41与11,或65与35。6.解:设所求的两个自然数为a、b,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业员工税务培训
- 新闻采访策划课件
- 办理退休手续培训
- 内燃机技术面试题及答案
- 安全防范技术考试试题及答案
- 辅警摄影基础知识培训课件
- 文化娱乐行业消费者行为分析报告
- 建设银行2025吉安市秋招群面案例总结模板
- 农业银行2025乌海市秋招群面案例总结模板
- 2025年3D打印技术的金属成型工艺
- 妊娠期高血压疾病的观察及护理
- 临床骨筋膜室综合征护理业务学习
- 医院DIP支付方式改革工作实施方案
- 企业与高校合作共建实验室协议
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 俄乌冲突课件初中生
- 第12课《醉翁亭记》课件2024-2025学年统编版语文九年级上册
- 《激光原理及应用》全套课件
- DB11T 1497-2017 学校及托幼机构饮水设备使用维护规范
- 九年级化学(全一册)知识点总结
- ESD基础知识培训讲义
评论
0/150
提交评论