


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时 :鸽巢问课题:鸽巢问题 课型:新授课教学内容:教材第68-70页例1、例2,及“做一做”,及第71页练习十三的1-2题。 教学目标: 了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 教法:探究、体验、观察、猜测学法:实验、推理等活动的学习方法。 教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。教学过程:一、创设情境,导入新知 老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。 师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-出示课题二、合作交流,探究新知 1.教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2.教学例2(课件出示例题2情境图) 思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明得出结论”的学习过程来解决问题(一)。 (1)探究证明 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。 (1)用假设法分析。 83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。 三、巩固新知,拓展应用 1.完成教材第70页的“做一做”。 学生独立思考解答问题,集体交流、纠正。 2.完成教材第71页练习十三的1-2题。 学生独立思考解答问题,集体交流、纠正。 四、课堂总结 1.通过今天的学习你有什么收获? 2.回归生活:你还能举出一些能用“鸽巢问题”解释的生活中的例子吗? 板书设计 鸽巢问题(1)(4,0,0),(0,1,3),(2,2,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025事业单位面试题目及答案
- 2025事业单位联考e类结构化面试试题及答案
- 2025广东深圳市中医院招聘临床学科骨干52人考试参考试题及答案解析
- 2025事业单位经济试题及答案
- 2025事业单位机械试题及答案
- 2025年供电电力试题及答案
- 2025下半年四川省卫生健康委员会所属事业单位考试招聘工作人员考试参考试题及答案解析
- 2025河北唐山中心医院消化内科招聘2人备考考试题库附答案解析
- 2025安徽合肥经开区招聘公益性岗位人员34人考试模拟试题及答案解析
- 楼梯间防火板施工方案
- 中国法律史-第一次平时作业-国开-参考资料
- 平行四边形的面积集体备课发言稿
- 大学美育(第二版) 课件 第八单元:建筑艺术
- 思想政治教育专业大学生职业生涯规划书
- 湘教版高一地理新教材《4.1水循环》公开课一等奖课件省赛课获奖课件
- 医院科研经费管理办法
- 2023年广州海洋地质调查局招聘社会在职人员高频考点题库(共500题含答案解析)模拟练习试卷
- 运用PDCA循环降低住院患者雾化吸入的不规范率品管圈成果汇报
- 感触最深的一件事七年级作文大全600字
- 中建二局“大商务”管理实施方案20200713(终稿)
- 现浇墩台身轴线偏位、全高竖直度检测记录表
评论
0/150
提交评论