



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浅谈抽屉原理问题解题技巧桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果是“至少两个苹果”吧?。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”。它是组合数学中一个重要的原理这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。一基础题型【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同?A.21B.22C.23D.24解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C.【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?()A.10B.11C.13D.14解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D.【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()A.101B.175C.188D.200解析:题目要求保证:两个手机号码后两位相同.手机号码后两位共有种不同组合.考虑最不利情形:先抽中了份没有填写手机号码的问卷,再抽中了100份手机号码后两位各不相同的问卷,再任意抽取任何一份问卷,手机号码后两位都会重复,总共抽取188份.因此,答案选C.【例4】某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票.问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同的两位候选人的票?A.382B.406C.451D.516解析:题目要求保证:不少于10位选举人投了相同的两位候选人.根据题意,不同的选票有种.考虑最不利情形:45种选票方式都被投了9次,再有一位选举人,就会有10位选举人投了相同的两位候选人的票,一共投票次,所以至少要有406人选举人.因此,答案选B.可以看出,题目中出现“至少,才能保证”的问法时,首先考虑抽屉原理,找到“最不利”情形,迅速得到答案.二应用题型不知道老师是否真正地知晓“抽屉原理”的含义,抽屉原理不等于最不利原则,无论是从数学上还是从行测上都不等于。抽屉原理不能解决文章这一部分多集合重复题目,因为抽屉原理证明的是n+k个元素在n个集合中的存在性,而非集合重复情况的讨论。抽屉原理的推论和应用是确定且可证明的,但是多集合重复的答案是逆向思维的情形构造,不可用抽屉原理证明。【例1】共有100个人参加某公司的招聘考试,考试内容共有5道题,15题分别有80人,92人,86人,78人和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?A.30B.55C.70D.74解析:想要“通过考试的人员尽量少”,就要让“未通过考试的人员尽量多”.15题答错的总数为.考虑最不利情形:恰好每人答错3道题,这样未能通过考试的人数会最多,即30人,则至少有70人通过考试.因此,答案选C.【例2】某班40名同学在期末考试中,语文,数学,英语三门课成绩优秀的分别有32人,35人,33人,三门课都优秀的人数至少是()?A.32B.28C.24D.20解析:想要“三门课都优秀的人尽量少”,就要让“至少一门课不优秀的人尽量多”.各门分别有8人,5人,7人未达到优秀,共人次.考虑最不利情形:这20人次分配给20个不同的人,就能保证三门课不都优秀的人数最多,即20人,则至少有人三门课都优秀.因此,答案选D.【例3】有10个学生,其中任意5个人的平均身高都不小于1.6米,那么其中身高小于1.6米的学生最多有多少人?()A.3B.4C.5D.6解析:题目要求:身高小于1.6米的学生最多.考虑最不利情形:1次把最矮的5个学生全部选中,且这5个人的平均身高都不小于1.6米,这就意味着最多会有4个人身高低于1.6米,而另外1个人的身高高于1.6米,即身高小于1.6米的学生最多4人.因此,答案选B.可以看出,题目中出现“3个或者3个以上的满足不同条件的集合时”,而问题中出现“都满足的至少有多少个”的问法时,也要首先考虑抽屉原理,找到反向“最不利”情形,进而迅速得到答案.抽屉原理题型是数量关系中的难点,需要从根本上掌握基本方法,熟悉基本题型,才能进一步加以应用。希望大家通过上面几道例题的讲解,可以举一反三。遇到问题时,能迅速定位是抽屉原理问题,构造“最不利”情形,从而快速的解答题目。点评:1.文章在选主题、选真题方面都做得很好,解析也很到位,没有废话且总结有针对性。2.文章的最大问题,在于概念和原理的混淆。“最不利原则”是行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台数据清洗算法在智能客服中的应用对比报告001
- 2025至2030年中国海南旅游业市场供需预测及投资战略研究咨询报告
- 2025版智慧社区物业管理及设施更新及安保服务合同
- 2025年度特殊技能人才法人技术顾问聘用合同
- 2025版专业级挖掘机械设备采购与售后服务合同
- 2025版企业师徒结对技术研发与市场合作合同
- 2025版数据中心空调系统维保及能效提升合同范本
- 2025年新型稻谷加工技术合作合同
- 2025年度项目可行性研究报告保密协议书
- 2025年度高端装修贷款合同文本
- DB32/T 1086-2022 高速公路建设项目档案管理规范(修订)
- 《滤芯销售培训》课件
- 2025年中国人保招聘笔试参考题库含答案解析
- 教师资格证《教育知识与能力》中学-必背知识点
- 施工单位管理培训
- 配料保密协议
- 2024年河南省郑州市二七区四中小升初数学试卷(含答案)
- 园区消防安全联动制度
- 《慈善法》知识竞赛题库与的答案(完整版)
- 托管运营合同范文
- 电气工程专业导论
评论
0/150
提交评论