概率论总结范文.doc_第1页
概率论总结范文.doc_第2页
概率论总结范文.doc_第3页
概率论总结范文.doc_第4页
概率论总结范文.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率论总结范文 北京邮电大学国际学院高欢Introduction tothe Probability1.1the fundamentalknowledge aboutprobability Experiments:It isused inprobability theoryto describevirtually everyprogress whoseoute isnot knownin advancewith certainty.1.repeat again and again2.Many outesExperimentscharacteristic3.Know allthe outes,but donot knowwhich onewill be obtained insome experiment4.Simple events,multiple eventsthe sample space:the collectionof allpossible outesof an experiment.For example:roll asix-sided dice,the sample space containsthe sixnumbers1,2,3,4,5,6.It canbe writtenas S=1,2,3,4,5,61.2the definitionof ProbabilityIn a given experiment,it isnecessary toassign to each event A in the samplespace Sa numberPr(A)which indicatesthe probability that Awill our1.For everyevent A,Pr(A)0Axiom2.Pr(S)=13.For everyinfinite sequence of disjoint events A1,A2,.11PrPr()iiiiAA=?=?1.Pr(?)=02.For everyfinite sequenceof ndisjointevents A1,.,An,Theorems11PrPr()nniiiiAA=?=?3.For everyevent A,Pr(Ac)=1-Pr(A)4.For everyevent A,0Pr()1A5.For everytwo events A and B,Pr(AB)=Pr(A)+Pr(B)-Pr(AB)Corollaries fromthe Axioms:If A?B,then Pr(BAc)=Pr(B)?Pr(A)If A?B,then Pr(A)Pr(B)Example1Consider two events A and Bsuch that Pr(A)=1/3and Pr(B)=1/2.Determine the value of Pr(BAc)for each of the following conditions:(a)A and B aredisjoint;(b)A?B;(c)Pr(AB)=1/8Solution:(a)Pr(BAC)=1/2(b)Pr(BAC)=1/2-1/3=1/6(c)Pr(BAC)=Pr(B)-Pr(AB)=1/2-1/8=3/81.3simple SampleSpaces and Combination MethodThe definitionof simple samplespace:A samplespace Scontaining noutes s1,.,sn iscalled asimple samplespace if the probabilityassigned toeach of the outess1,sn is1/n.If an event Ain thissimplesamplespace containsexactly moutes,then Pr(A)=mn.Example1:Consider anexperiment inwhich afair coinis tossedonce anda balanceddie isrolled once.(a)Describe the samplespacefor thisexperiment.(b)What isthe probability that ahead will be obtained on thecoin andan oddnumber will beobtained on the die?Solution:(a)123456head(head,1)(head,2)(head,3)(head,4)(head,5)(head,6)tail(tail,1)(tail,2)(tail,3)(tail,4)(tail,5)(tail,6)S=(head,1)(head,2)(head,3)(head,4)(head,5)(head,6)(tail,1)(tail,2)(tail,3)(tail,4)(tail,5)(tail,6)(b)3=1/4Pr(A)=26Binomial cofficients!()!nnkk nk?=?For allnumbers x and yand eachpositive integern,(x+y)n=0nkn k?knx yk=?Example2The UnitedStates Senatecontains twosenators from eachof the50states.(a)If amittee ofeight senatorsis selected at random,what isthe probability that itwill contain at least one of the twosenators from a certainspecified state?(b)what isthe probabilitythat agroup of50senators selected at randomwill containone senatorfromeachstate?Solution:(a)Pr(A)=12798226988100C CCCC+(b)Pr(B)=50501002C1.4The probability of aUnion ofEvents Theorem1:Pr(123AAA)=Pr(A1)+Pr(A2)+Pr(A3)-Pr(A1A2)+Pr(A2A3)+Pr(A1A3)+Pr(A1A2A3).Example1:Suppose thatfour guestscheck theirhats when they arriveat arestaurant,and that these hatsare returnedto themin a random orderwhen theyleave.Determine the probabilitythatno guestswill receivethe properhat.Solution:Pr(A)=4433A=38Example2:Among agroup of200students,137students areenrolled in a mathematicsclass,50students areenrolled ina historyclass,and124students areenrolled ina musilass.Furthermore,the number of students enrolled inboth the math andhistory classes is33,the numberof studentsenrolled inboth historyand musilassesis29,the numberof studentsenrolled inboth mathand musicis92.Finally thenumberof studentsenrolled in allthree classesis18.We shalldetermine the probabilitythata studentselectedat random fromthe groupof200students willbe enrolled inatleast oneof thethree classes.Solution:let Adenote theevent that the selectedstudent isenrolled in themathclass.Let Bdenote theevent that the selectedstudent isenrolledin the historyclass.Let Cdenote theevent thatthe selectedstudent isenrolledinthe musilass.Pr(A)=137/200Pr(B)=50/200Pr(C)=124/200Pr(AB)=33/200Pr(BC)=29/200Pr(AC)=92/200Pr(ABC)=18/200We canget Pr(ABC)=7/82conditional probability2.1the definitionof conditionalprobability Pr(A|B)=Pr()Pr()ABB Pr(AB)=Pr(B)Pr(A|B)or Pr(AB)=Pr(A)Pr(B|A)Suppose that A1,A2,.An areevents such that Pr(A1A2.An-1)0.Then Pr(A1A2.An)=Pr(A1)Pr(A2|A1)Pr(A3|A1A2)Pr(An|A1A2An-1)Suppose thatA1,A2,An,B areevents such thatPr(A1A2.An-1|B)0.Then Pr(A1A2An|B)=Pr(A1|B)Pr(A2|A1B)Pr(An|A1A2.An-1B)Example1Selecting four balls.Suppose thatfourballsare selectedone ata time,without replacement,from abox containingr redballs andb blueballs(r=2,b=2).We shalldetermine the probabilityofobtaining thesequenceofoutes red,blue,red,blue.Solution:If welet Rjdenote theevent thata redball isobtainedon the jthdraw and let Bjdenote theevent thata blueball isobtainedonthe jthdraw,then Pr(R1B2R3B4)=Pr(R1)Pr(B2|R1)Pr(R3|R1B2)Pr(B4|R1B2R3)1rbr?+?+?=1123brb rbrbrb?+?2.2Independent EventsDefinition:A andB are independent if and only if Pr(A|B)=Pr(A)and Pr(B|A)=Pr(B).Pr(AB)=Pr(A)Pr(B)=0Theorem IftwoeventsA andB are independent,then the eventsAand BCare alsoindependent Pr(ABC)=Pr(A)Pr(BC)In particular,in orderfor threeeventsA,B,andCto be independent,thefollowingfour relationsmust besatisfied:Pr(AB)=Pr(A)Pr(B)Pr(AC)=Pr(A)Pr(C)Pr(BC)=Pr(B)Pr(C)Pr(ABC)=Pr(A)Pr(B)Pr(C)If AandB are independentevent,then ACand BCare alsoindependent Proof:Pr(ACBC)=1-Pr(AB)=1-Pr(A)-Pr(B)+Pr(A)Pr(B)=1-Pr(B)-Pr(A)1-Pr(B)=1-Pr(B)1-Pr(A)=Pr(AC)Pr(BC)Example1Two studentsAandBareboth registeredfor acertain course.Assume thatstudent Aattends class80percent of the time,student Battends class60percent ofthe time,and theabsences of two studentsare independent.(a)what isthe probabilitythat atleast oneofthetwo studentswillbein class on agiven day?(b)if atleastoneofthetwo studentsis inclassonagivenday,what isthe probabilitythatAis inclass thatday.Solution:(a)Pr(AB)=Pr(A)+Pr(B)-Pr(AB)=0.8+0.6-0.80.6=0.92(b)Pr(A|AB)=Pr()Pr()AABAB=0.8/0.92=0.8696Example2If AandBare independentevents,Pr(A)=0.4,Pr(B)=0.7,what isthevalue ofPr(AC|BC)Solution:Pr(AC|BC)=Pr(AC)=1-Pr(A)=0.62.3Bayestheorem Theorem1suppose thattheeventsB1Bk from a partitionofthe space Sand Pr(Bj)0for j=1k.Then,for everyeventAin S,Pr(A)=1Pr()Pr(|)kjjjBA B=Theorem2Bayestheorem.Let theevent B1.,Bk froma partitionofthespace SsuchthatPr(Bj)0for j=1,.k,andletA beaneventsuchthatPr(A)0.Then,for i=1,k,Pr(Bi|A)=1Pr()Pr(|)Pr()Pr(|)iikjjjBA BBAB=Example1The percentagesof votersclassed asLiberals inthree differentelection districtare dividedas follows:In thefirst district,21percent;inthesecond district,45percent;and inthe thirddistrict,75percent.If adistrict is selectedatrandom anda voterisselectedatrandomfrom thatdistrict,what isthe probabilitythat shewillbea Liberal?Solution:Pr(A)=1110.210.450.75333+=0.47Example2There is a sicktree,its hostleft thehome togo ona journey.He askhis neighborto waterthe tree.Suppose ifthe sicktree isnt bewatered,the probabilityof treegoing dead is0.8,ifthe tree iswatered,the probabilityof goingdeadis0.15.and wealso knowthe probabilitythattheneighbor remembersto waterthe tree is0.9.(a)when thehost eback,what isthe probabilitythatthe treeisstill alive?(b)whenthehost cameback,he foundthetreehad beendead,what isthe probabilitythattheneighbor forgotto waterthetree.Solution:(a)Pr(A)=0.90.85=0.7850.10.2+(b)Pr(C1|B)=0.10.8+0.10.80.90.15=0.3723Random Variablesand Distribution3.1the additionalkonwledege aboutrandom variableDefinition of a random variable Consideranexperimentfor which thesamplespace isdenoted byS.A real-valued functionthat isdefined onthespaceS iscalled a random variable.In otherwords,inaparticular experimenta random variable Xwould besome functionthat assigna real number X(s)toeachpossible outesS.The uniform distribution onInteger/discrete dis

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论