MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc_第1页
MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc_第2页
MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc_第3页
MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MATLAB求解SDP问题使用SeDuMi和YALMIPSDP(SemiDefinite Programing,半定规划)是凸优化(Convex Optimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。SDP问题的对偶原型及求解步骤下面就是一个典型的SDP问题:目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(Linear Matrix Inequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。*等式约束的个数*不等式约束的个数*LMI中矩阵的阶数这样,我们就可以调用来求解了,其中的y即为优化后得到的最优解。一个典型的例子这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题。如我们要找使矩阵的特征值最大化,其中分别为:同时,我们对也给出一个不等式限制和一个等式限制:那么这个问题可以描述成以下形式:其中的取值分别为:下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:最后得到的y即为最优解,它的前三个分量就是我们想要的答案。如下图所示:YALMIP一出,谁与争锋我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,Yet Another LMI Package,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:结果如下图所示:可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论