




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.2011年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给也的四个选项中,只有一项是符合题目要求的.1.复数= () A.B.C.D.【测量目标】复数代数形式的混合运算.【考查方式】直接给出复数的代数式,求值.【难易程度】容易【参考答案】C【试题分析】复数=.故选C2. “”是“”的 ()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【测量目标】充要条件的判断,不等式的解.【考查方式】根据不等式的解,判断充要条件.【难易程度】容易【参考答案】A【试题分析】“”,“”“或”“”是“”的充分而不必要条件故选A3已知,则 ()A6B.2C3D.6【测量目标】极限的运算.【考查方式】先将极限式通分化简,根据极限值,求未知数【难易程度】容易【参考答案】D【试题解析】原式=(步骤1)=(步骤2)=a=6 (步骤3) 故答案选D4 (其中且)的展开式中与的系数相等,则n= ()A6B.7 C8D.9【测量目标】二项式定理.【考查方式】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中与的系数,列出方程求出n【难易程度】容易【参考答案】B【试题解析】二项式展开式的通项为(步骤1)展开式中与的系数分别是(步骤2)解得n=7(步骤3)故选B5下列区间中,函数,在其上为增函数的是()A.B. C.D. 【测量目标】对数函数的单调性,分段函数,零点.【考查方式】根据零点分段法,我们易将函数解析式化为分段函数的形式,再根据复合函数“同增异减”的原则,求出函数的单调区间进而得到结论【难易程度】中等【参考答案】D【试题解析】,(步骤1)根据复合函数的单调性我们易得在区间上单调递减在区间上单调递增(步骤2)故选D.6若的内角所对的边满足,且则的值为()A B. C.1 D.【测量目标】余弦定理.【考查方式】将已知的等式展开;利用余弦定理表示满足的条件,继而求值【难易程度】中等【参考答案】A【试题解析】即由余弦定理得,(步骤1),(步骤2).故选A7已知,则的最小值是()AB.4 C. D.5【测量目标】基本不等式.【考查方式】根据题设中的等式,把表达式转化展开,利用基本不等式求最小值【难易程度】中等【参考答案】C【试题解析】(步骤1)= (当且仅当时等号成立)(步骤2)故选C8在圆内,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A. B. C. D. 【测量目标】圆的标准方程,两点间的距离公式,面积公式.【考查方式】把圆的方程化为标准方程后,得到圆心坐标与圆的半径,根据两点间的距离公式求长度,再根据面积公式求四边形面积.【难易程度】中等【参考答案】B【试题解析】把圆的方程化为标准方程得:,则圆心坐标为,半径为,(步骤1)根据题意画出图象,如图所示:(步骤2)由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则,所以,又,(步骤3)所以四边形ABCD的面积S= =(步骤4)故选B 第8题图 9.高为的四棱锥SABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A B. C.1 D. 【测量目标】点、线、面间的距离,球内接多面体.【考查方式】由题意可知ABCD所在的圆是小圆,可以推出顶点S在球心距的垂直分的平面上,根据条件,则可求出距离【难易程度】较难【参考答案】C【试题解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,所以底面ABCD的中心与顶点S之间的距离为1.故选C10.设m,k为整数,方程在区间内有两个不同的根,则的最小值为()AB.8 C.12 D.15【测量目标】二次函数的性质,函数零点,解不等式.【考查方式】利用函数零点的有关性质,得到关系,根据函数的性质求解不等式,进而求解【难易程度】较难【参考答案】D【试题解析】令,则在内有两个不同的零点,又,由二次函数图象可知,(步骤1)即由题意可以得到: (步骤2)且,(步骤3)又因为m,k为整数且m为正整数,由上证知k为正整数,故为使得m+k最小,(步骤4)只需令时,得到k的取值为8时,m的取值为7,此时m+k的最小值为15(步骤5)故答案选:D二、填空题(共5小题,每小题3分,满分15分)11.在等差数列中,则=【测量目标】等差数列的性质.【考查方式】根据等差数列的性质所有下标之和相同的两项之和相等,直接计算出结果【难易程度】容易.【参考答案】74【试题解析】等差数列中,故答案为:7412.已知单位向量的夹角为,则【测量目标】平面向量数量积.【考查方式】由向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模【难易程度】容易.【参考答案】【试题解析】=.故答案为.13将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为_【测量目标】互斥事件的概率,独立重复试验.【考查方式】根据独立重复试验,得到互斥的情况,写出概率,得到结果.【难易程度】中等【参考答案】【试题解析】由题意知本题是一个n次独立重复试验中恰好发生k次的概率,(步骤1)正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,(步骤2)正面出现的次数比反面出现的次数多的概率是+=(步骤3)故答案为:14已知,且,则的值为_【测量目标】二倍角,同角三角函数的基本关系,正弦的两角和公式.【考查方式】利用题设等式,两边平方后即可求得,进而根据同角三角函数的基本关系求得,利用把原式的分母展开,把和的值代入即可【难易程度】中等【参考答案】【试题解析】,(步骤1)两边平方后求得,(步骤2)(步骤2)(步骤4)(步骤5)故答案为:15动圆的圆心在抛物线上,且动圆恒与直线相切,则动圆必过点【测量目标】抛物线的方程,定义.【考查方式】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题【难易程度】较难【参考答案】【试题解析】抛物线的焦点,准线方程为,(步骤1)故圆心到直线的距离即半径等于圆心到焦点F的距离,所以F在圆上(步骤2)故答案为:三、解答题(共6小题,满分75分)16设满足,求函数f(x)在上的最大值和最小值【测量目标】由的部分图象求解析式,利用函数的单调性求最值,二倍角.【考查方式】利用二倍角公式化简函数,然后根据已给的条件,求出参数的值,进一步求解析式,再根据自变量的范围求出的范围,利用单调性求出函数的最大值和最小值【难易程度】中等【试题解析】=(步骤1)由得解得所以,(步骤2)所以时,是增函数,(步骤3)所以 时,是减函数,(步骤4)函数在上的最大值是:;(步骤5)又,;(步骤6)所以函数f(x)在上的最小值为:;(步骤7)17.某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:()恰有2人申请A片区房源的概率;()申请的房源在片区的个数的分布列与期望【测量目标】离散型随机变量的期望,等可能事件的概率.【考查方式】(I)给出等可能事件的实际例子,分析得到包含的的事件的个数,再求目标的个数,得到概率;根据题意,结合第一问,写出变量对应的概率,画出分布列,求出变量的期望值.【难易程度】中等【试题解析】(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,(步骤1)满足条件的事件是恰有2人申请A片区房源,共有(步骤2)根据等可能事件的概率公式得到P=(步骤3)(II)由题意知的可能取值是1,2,3,(步骤4),(步骤5)(步骤6)的分布列是123P(步骤7).(步骤8)18设的导数满足,其中常数,(I)求曲线在点处的切线方程(II)设求函数的极值【测量目标】导数的几何意义,函数零点的应用,利用导数求极值,求函数解析式.【考查方式】已知含参数的函数解析式,根据两个导数值的联立,求出参数得到函数的解析式,进而求具体某点的切线方程;构造新函数,分类讨论,利用导数求极值.【难易程度】较难【试题解析】(I)(步骤1)令,得,解得(步骤2)令,得,因此,解得,(步骤3)因此,(步骤4)又故曲线在点处的切线方程为,即(步骤5)(II)由(I)知从而有(步骤6)令,则或当时,(步骤7)当时,当时,(步骤8)在时取极小值,在时取极大值(步骤9)19如图,在四面体ABCD中,平面()若,求四面体ABCD的体积()若二面角CABD为,求异面直线AD与BC所成角的余弦值第19题图 【测量目标】异面直线及其所成的角,棱锥的体积,三垂线定理.【考查方式】根据所给的几何图形以及已知的条件,找到椎体的底面和高,利用椎体的体积公式,求值;根据三垂线定理,找到二面角的平面角,利用平移找到异面直线所成的角,求余弦值【难易程度】较难【试题解析】(I)设F为AC的中点,由于,所以(步骤1)故由平面平面,知DF平面ABC,即DF是四面体ABCD的面ABC上的高,(步骤2)且,(步骤3)在中,因,由勾股定理易知,(步骤4)故四面体ABCD的体积V=(步骤5)(II)设G,H分别为边CD,BD的中点,则,(步骤6)从而是异面直线AD与BC所成角或其补角设E为边AB的中点,则,由,知,(步骤7)又由(I)有DF平面ABC,故由三垂线定理知,所以为二面角CABD的平面角,(步骤8)由题设知设AD=a,则,(步骤9)在中,(步骤10)从而,因,故在中,(步骤11)又,从而在中,因FG=FH,由余弦定理得(步骤12)20.如图,椭圆的中心为原点O,离心率,一条准线的方程为()求该椭圆的标准方程()设动点P满足,其中M,N是椭圆上的点直线OM与ON的斜率之积为问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值若存在,求F1,F2的坐标;若不存在,说明理由第20题图 【测量目标】椭圆的简单性质,椭圆的方程,直线与椭圆的位置关系,椭圆的定义,圆锥曲线中的探索问题.【考查方式】根据椭圆的性质,求出各参数,得到椭圆的标准方程;利用直线与椭圆的位置关系,通过直线方程和椭圆方程的联立,探索椭圆中是否存在定点问题.【难易程度】较难【试题解析】()由 (步骤1)求得.(步骤2椭圆的方程为: (步骤3)()设则由,得,即,(步骤4)点M,N在椭圆上,所以,故(步骤5)设分别为直线的斜率,根据题意可知(步骤6)(步骤7)所以P在椭圆设该椭圆的左,右焦点为F1,F2,(步骤8)由椭圆的定义可推断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平衡记分卡课件
- 农发行朝阳市凌源市2025秋招半结构化面试题库及参考答案
- 新能源供应链2025年本土化与全球化平衡策略创新研究
- 农发行安顺市平坝区2025秋招笔试专业知识题专练及答案
- 华夏银行日照市东港区2025秋招小语种岗笔试题及答案
- 2025-2030年新能源汽车充电设施产业链上下游分析报告
- 2025年高三历史生物试卷及答案
- 新能源行业人才流动与竞争格局深度分析:2025年发展蓝图
- 平法图集讲解课件
- 沼气工程在生态农业中的应用与新能源产业链融合报告(2025版)
- 电烙铁焊接技术培训
- 石群邱关源电路(第1至7单元)白底课件
- GB/T 40529-2021船舶与海洋技术起货绞车
- GB 31603-2015食品安全国家标准食品接触材料及制品生产通用卫生规范
- GA 392-2009警服雨衣
- 关于公布2016年度中国电力优质工程奖评审结果的通知
- 送达地址确认书(诉讼类范本)
- 商务礼仪情景剧剧本范文(通用5篇)
- 幼教培训课件:《家园共育体系建构与实施策略》
- 《电子制造技术-电子封装》配套教学课件
- 机关档案管理工作培训PPT课件
评论
0/150
提交评论