



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 平行四边形第一节 平行四边形的性质(二)酒泉市第五中学 杜进艳一、学生起点分析学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用,因此对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础。二、学习任务分析本节的学习任务主要是进一步掌握平行四边形的性质,因此教学目标为:1进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质;2在应用中进一步发展学会合情推理能力,增强学生逻辑推理能力,使学生掌握说理的基本方法。教学重点:平行四边形性质的应用教学难点:发展合情推理及逻辑推理能力教学方法:启发诱导法,探索分析法三、教学过程第一环节 回顾思考,引入新课活动内容:1平行四边形都有哪些性质?2回顾思考(1)平行四边形ABCD中,A比B大20,则C的度数为( )A60 B80 C100 D120(2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( )A5cm B15cm C6cm D16cm(3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有 第二环节 探索发现,灵活运用一、探索问题1 在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?A(学生思考、交流)得出:平行四边形的对角线互相平分。B请尝试证明这一结论已知:如图6-4,平行四边形ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明: 四边形ABCD是平行四边形 AB=CD AB/DC BAO=DCO ABO=CDO AOBCOD OA=OC,OB=OD.你还有其他的证明方法吗,与同伴交流。二、探索问题2 例1如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F.求证:OE=OF.A议论交流B师生共析归纳解: 四边形ABCD是平行四边形 AD=CB AD/BC OA=OC DAC=ACB又AOE=COFAOECOFOE=OF三、探索问题3如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ADB=900,OA=6,0B=3。求AD和AC的长度. 解: 四边形ABCD是平行四边形 OA=OC=6 OB=OD=3 AC=12 又ADB=900 在RtADO中,根据勾股定理得OA2=0D2+AD2 AD=33第三环节 观察分析,理性升华例2、已知,如图,在平行四边形ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于M,N,交BA,BC于点P,点B,你能说明MQ=NP吗?A学生独立观察分析B交流探索 C师生共析小结解:四边形ABCD是平行四边形AD/BC,AB/CD 即AM/CQ又AC/MN即AC/MQ由平行四边形定义得四边形MQCA是平行四边形MQ=AC同理 NP=ACMQ=NP小结:利用平行四边形可以证明两线段相等第四环节 巩固反馈,总结提高一、通过练习,进一步应用平行四边形性质,达到掌握的程度。1在平行四边形ABCD中,A=150,AB=8cm,BC=10cm,求平行四边形ABCD的面积。A学生议论B师生共评解:过A作AEBC交BC于E,四边形ABCD是平行四边形AD/BCBAD+B =180BAD =150B =30在RtABE中,B =30AE =1/2AB=4平行四边形ABCD的面积=410=40cm2小结:平行四边形的问题,可以转化为三角形,问题解决。二、计算题1课本随堂练习2平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。第五环节 评价反思,目标回顾活动内容:1本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?2本节通过实例,你如何理解“两条平行线间距离”?3利用平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 射击技术小试题及答案大全
- 学校篮球场施工分包合同
- 防控技能知识培训内容课件
- 国际市场开发协议分析
- 共享物流网络-洞察及研究
- 社区物业服务合同(标准版)2篇
- 基本供货标准合同5篇
- 工程木门订购合同常用版范文3篇
- 部队修理装备课件
- 山东省枣庄市滕州市2024-2025学年八年级上学期第二次月考生物试卷(含答案)
- 2024年中国中间相沥青行业调查报告
- 2025至2030细胞免疫项目融资商业计划书
- 毒蕈中毒健康教育课件
- DRG视角下护理管理
- 2025年国家网络安全宣传周知识竞赛考试题库
- 水电厂自动化管理制度
- 2025-2030中国同声传译市场深度调查及投资效益分析报告
- 2025至2030年中国红外热成像仪产业发展态势及投资决策建议报告
- 第五代移动通信设备安装工程造价编制指导意见信息通信建设工程费用定额信息通信建设工程概预算编制规程-2024
- 密集场所安全管理制度
- 休克分类与护理要点
评论
0/150
提交评论