已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 行列式 1. 1. 解 =2(-4)3+0(-1)(-1)+118 -013-2(-1)8-1(-4)(-1) =-24+8+16-4=-4. 2. 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. 3. =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a) 4. 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3 =3xy(x+y)-y3-3x2 y-x3-y3-x3 =-2(x3+y3). (5)1 3 (2n-1) 2 4 (2n); 解 逆序数为: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) (6)1 3 (2n-1) (2n) (2n-2) 2. 解 逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) (2n)2, (2n)4, (2n)6, , (2n)(2n-2) (n-1个) 3. 写出四阶行列式中含有因子a11a23的项. 解 含因子a11a23的项的一般形式为(-1)ta11a23a3ra4s,其中rs是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a11a23的项分别是 (-1)ta11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44, (-1)ta11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4. 计算下列各行列式: 1. 解 . 2.解 . 3. 解 . 4. 解 =abcd+ab+cd+ad+1. 5. 证明: (1); =(a-b)3 . (2; 证明 . . ; 3.证明 (c4-c3, c3-c2, c2-c1得) (c4-c3, c3-c2得) . 4. 证明 =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d). 5. 证明 用数学归纳法证明. 当n=2时, , 命题成立. 假设对于(n-1)阶行列式命题成立, 即 Dn-1=xn-1+a1 xn-2+ +an-2x+an-1, 则按第一列展开, 有 =xD n-1+an=xn+a1xn-1+ +an-1x+an . 因此, 对于n阶行列式命题成立. 6. 证明因为D=det(aij), 所以 . 同理可证 . . 7. 计算下列各行列式(Dk为k阶行列式): 1.解 (按第n行展开) =an-an-2=an-2(a2-1). 2. 解 将第一行乘(-1)分别加到其余各行, 得 , 再将各列都加到第一列上, 得 =x+(n-1)a(x-a)n-1. 3. 解 根据第6题结果, 有 此行列式为范德蒙德行列式. . 4.(按第1行展开) . 再按最后一行展开得递推公式 D2n=andnD2n-2-bncnD2n-2, 即D2n=(andn-bncn)D2n-2. 于是 . 而 , 所以 . 5. 解 aij=|i-j|, =(-1)n-1(n-1)2n-2. 6. 解 . 8 1. 解 因为 , , , , ,所以 , , , . 2. 解 因为 , , , , , , 所以, , , , .9. 解 系数行列式为 . 令D=0, 得 m=0或l=1. 于是, 当m=0或l=1时该齐次线性方程组有非零解. 10. 解 系数行列式为 =(1-l)3+(l-3)-4(1-l)-2(1-l)(-3-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 口腔科口腔溃疡患者的口腔护理方案
- 北京市平谷区市级名校2025年生物高一上期末学业质量监测模拟试题含解析
- 湖南省邵阳市育英高级中学2026届物理高二第一学期期末统考模拟试题含解析
- 北京科技大学天津学院《路由器和交换机的配置》2024-2025学年第一学期期末试卷
- ICU抗感染治疗规范
- 危重患者从头到脚评估
- 外伤性大出血急救流程规范
- 康复医学科脑卒中康复干预教程
- 精神科抑郁症药物治疗与护理干预培训指南
- 现场评估和救护
- 色盲测试色盲自检
- 护师岗位竞聘述职报告
- 新生儿窒息复苏课件
- 大学生职业规划新能源汽车
- 大学生职业规划大赛成长赛道模板
- 三一挖掘机安全操作与保养课件
- 老人及儿童合理用药课件
- 《基于EVA的企业价值评估文献综述》3700字
- 爱校知校活动方案
- 基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测
- 高考语文专题复习:《淮南子》文言文阅读训练
评论
0/150
提交评论