



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一师一优课 教学设计【教学目标】1 知识与能力:一要熟练掌握二次函数和平面几何的基础知识;二要利用几何图形和二次函数的有关性质和知识,充分挖掘题目中的隐含条件,达到解题的目的。2过程与方法:一要通过综合题的训练要求学生熟练掌握待定系数法、分类讨论、数形结合的数学思想方法;二要经历探究利用函数的模型表示线段长或面积的过程。3情感态度与价值观:一要通过探究,互相讨论,发表意见等学习过程,培养合作精神和认真倾听的习惯,二要经历探究面积的最值问题体会二次函数的应用价值和二次函数模型对解决最值问题的优越性。 【学情分析】二次函数综合题知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此在解决此类综合题时,要求学生,一要树立必胜的信心,二要具备扎实的基础知识和熟练的解题技能,三要掌握常用的解题策略。【教学重点难点】二次函数与几何图形相结合的综合问题【教学过程】一:探究问题,交流讨论1:问题一:如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点。 (1)求该抛物线的表达式; (2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标。2:合作交流;分类讨论;情况一、二 情况三二:师生互动:(1)设该抛物线的表达式为y=ax+bx+c根据题意,得a- b+c=0 a=9a+3b+c=0 解之,得 b=c=-1 c=-1 所求抛物线的表达式为y=x-x-1 (2)AB为边时,只要PQAB且PQ=AB=4即可。 又知点Q在y轴上,点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P1,P2 .而当x=4时,y=;当x=-4时,y=7,此时P1(4,)P2(-4,7)当AB为对角线时,只要线段PQ与线段AB互相平分即可又知点Q在Y轴上,且线段AB中点的横坐标为1点P的横坐标为2,这时符合条件的P只有一个记为P3而且当x=2时y=-1 ,此时P3(2,-1)综上,满足条件的P为P1(4,)P2(-4,7)P3(2,-1)三:解决问题:问题2:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C (2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3) 若点P是抛物线上的动点,点Q是直线 上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标设抛物线的解析式为 yax2bxc (a0),则有 解得 a,b1,c4 抛物线的解析式为 yx2x43分过点M作MDx轴于点D,设点M的坐标为(m,n)DABCMyxO则ADm4,MDn,nm2m4SSAMDS梯形DMBOSABO (m4)(n)(n4)(m)44 2n2m8ABCxyOQ4P1Q1Q3Q2P2 2(m2m4)2m8 m24m (4m0) 6分S最大值47分 满足题意的Q点的坐标有四个,分别是,11分的解答过程以为平行四边形的一边时,由得,得,;由得,(舍去),得;以为平行四边形的对角线时,由图形的中心对称易得四:学法指导: 本题主要考查了二次函数解析式的确定,图形面积的求法,二次函数最值的 应用,以及平行四边形的判定和性质。 本题第问用两根式更方便,但不是数学课程标准所要求;第问用S=SAMOSBMOSABO更简洁;第问用纵坐标之差为4,转化为一元二次方程求解;关键是点的坐标(字母)与线段长度的转换,学生典型错误多表现在分类不全和计算错误上 本题将二次函数、方程、三角形和四边形的知识结合在一起,突出了待定系数法、数形结合思想、方程思想、函数思想、分类讨论思想、符号思想等重要的数学思想方法的考查第问考查待定系数法,是数学的核心知识之一,可设定二次函数的不同待定形式;第问,由于动点限定在抛物线上,且位于第三象限,动点M的横坐标m限制在4m0范围内,使得AMB的面积S关于动点M的横坐标m函数关系式需要附加约束条件由于AMB不是特殊的三角形,求其面积需要进行转化,要求进一步提高;第问,属于双动点问题,仅要求动点P在抛物线上,动点Q在直线上,进一步拓展了探究空间以点P、Q、B、O为顶点的四边形为平行四边形,需要分OB为一边,或者OB为一条对角线进行讨论,根据图形特点,转化为特殊的点线关系,即可得到要求点的坐标本题有效考察学生的探究能力及学生数学思考的真实水平同时,题目设计以问题的探索为核心,体现了课程标准对探究性学习的要求本题设问自然流畅,且富有变化,层次感较好,随着解答过程中对学生能力要求的逐步提高,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年胃残余量标准及规范指南
- 2025年乡镇食品安全会议记录
- 2025年国家安全教育日心得体会
- 陶艺专业的毕业论文
- 机电化工系的毕业论文
- 2025年泌尿系统用药合作协议书
- 本科法学毕业论文
- 备战高考励志演讲稿五-多篇
- 阅读教学主问题设计研究
- 如何开展毕业论文
- 《ACT就这么简单》课件
- 农机行政处罚流程图
- 盘阀结构和原理课件
- GB∕T 6818-2019 工业用辛醇(2-乙基己醇)
- 环境、环境问题与环境科学
- 钻具内防喷工具课件
- 新版(七步法案例)PFMEA
- 会计师事务所7(报告流转签发制度12)
- TCECS 20007-2021 城镇污水处理厂污泥厌氧消化工艺设计与运行管理指南
- 社保现金补助协议书
- 《中医内科学血证》PPT课件.ppt
评论
0/150
提交评论