数学北师大版九年级下册二次函数利润的最值问题教学设计.doc_第1页
数学北师大版九年级下册二次函数利润的最值问题教学设计.doc_第2页
数学北师大版九年级下册二次函数利润的最值问题教学设计.doc_第3页
数学北师大版九年级下册二次函数利润的最值问题教学设计.doc_第4页
数学北师大版九年级下册二次函数利润的最值问题教学设计.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于二次函数求解最大利润问题教学设计一、教材分析本节课是在学习了二次函数的概念、图像及性质后,对二次函数性质的应用课。主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:1、知识与技能通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。2、过程与方法通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。3、情感态度价值观(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。(2)在知识教学中体会数学知识的应用价值。本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。二、学情分析在解决函数的实际问题时,要善于从实际问题的情境中抽象出数学模型,使实际问题转化为数学问题。通过数学方法解决问题。学生刚刚学习了“二次函数的概念、图象及性质”,因此,只要教师能为学生搭建一个有梯次的研究型学习的平台,学生完全有可能由对具体事例的自主分析,建立数学模型,如再经教师巧妙引领,势必会激发学生对学习的兴趣,从而体会学习的快乐。三、实验研究:作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:(一)、利用二次函数解决实际问题的易错点:题意不清,信息处理不当。选用哪种函数模型解题,判断不清。忽视取值范围的确定,忽视图象的正确画法。将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。(二)、解决问题的突破点:反复读题,理解清楚题意,对模糊的信息要反复比较。加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。注意检验,养成良好的解题习惯。因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。四、教学过程实际问题与二次函数第一个探究题是用二次函数求解最大利润问题。题目内容是:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?第一节是一班的课,我知道二次函数应用是难点,何况该题目又是涨价又是降价。我怕把学生弄糊涂,上课后先让学生读题弄明白题意,后又让学生讨论。大约10分钟,检查结果很不理想。大部分学生对该题目感觉无从下手。相当一部分学生考虑问题的出发点总离不开方程。给二班上课之前我就琢磨,怎样才能让学生从方程思想过渡到函数。函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目: 1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?(学生很自然列方程解决)改换题目条件和问题:2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量定价和利润,符合函数定义,从而想到用函数知识来解决二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。于是学生很容易完成下列求解。解:设该商品定价为x元时,可获得利润为y元依题意得: y (x40)30010(x60)10x21300x3600010(x65)26250 30010(x60) 0当x=65时,函数有最大值。 得x 90(40x 90)即该商品定价65元时,可获得最大利润。增加难度,即原例题3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论