免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
十字相乘法分解因式同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢?观察=,可知=。这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。这就是分解因式的十字相乘法。下面举例具体说明怎样进行分解因式。例1、 因式分解。分析:因为 7x + (-8x) =-x解:原式=(x+7)(x-8)例2、 因式分解。分析:因为 -2x+(-8x)=-10x解:原式=(x-2)(x-8)例3、 因式分解。分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。 因为 9y + 10y=19y解:原式=(2y+3)(3y+5)例4、 因式分解。分析:因为 21x + (-18x)=3x解:原式=(2x+3)(7x-9)例5、 因式分解。分析:该题可以将(x+2)看作一个整体来进行因式分解。因为-25(x+2)+-4(x+2)= -29(x+2)解:原式=2(x+2)-55(x+2)-2 =(2x-1)(5x+8)例6、 因式分解。分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次十字相乘。因为 -2+-12=-14 a + (-2a)=-a 3a +(-4a)=-a解:原式=-2 -12 =(a+1)(a-2)(a+3)(a-4)从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握。但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了十字相乘法分解因式1二次三项式(1)多项式,称为字母 的二次三项式,其中 称为二次项, 为一次项, 为常数项例如:和都是关于x的二次三项式(2)在多项式中,如果把 看作常数,就是关于 的二次三项式;如果把 看作常数,就是关于 的二次三项式(3)在多项式中,把 看作一个整体,即 ,就是关于 的二次三项式同样,多项式,把 看作一个整体,就是关于 的二次三项式2十字相乘法的依据和具体内容(1)对于二次项系数为1的二次三项式方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母二、典型例题例1 把下列各式分解因式:(1); (2)例2 把下列各式分解因式:(1); (2)例3 把下列各式分解因式:(1); (2);(3)例4 分解因式:例5 分解因式例6 分解因式例7 分解因式:ca(ca)bc(bc)ab(ab)例8、已知有一个因式是,求a值和这个多项式的其他因式试一试:把下列各式分解因式:(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 课后练习一、选择题1如果,那么p等于 ()Aab Bab Cab D(ab)2如果,则b为 ()A5 B6 C5 D63多项式可分解为(x5)(xb),则a,b的值分别为 ()A10和2 B10和2 C10和2 D10和24不能用十字相乘法分解的是 ()A B C D5分解结果等于(xy4)(2x2y5)的多项式是 ()A BC D6将下述多项式分解后,有相同因式x1的多项式有 (); ; ; ; A2个 B3个 C4个 D5个二、填空题7_8(ma)(mb) a_,b_9(x3)(_)10_(xy)(_)1112当k_时,多项式有一个因式为(_)13若xy6,则代数式的值为_三、解答题14把下列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询行业发展职业规划方案
- 咨询师方案流程培训总结
- 徐汇区上门健康咨询方案
- 民房建筑方案设计图怎么画
- 展览安保活动方案策划
- 开关柜更换消缺施工方案
- 咨询方案建议纲要怎么做
- 初中数学有理数知识详解
- 钢结构焊缝工程施工方案
- 用于可穿戴纺织品的聚酰胺6基复合材料的制备及性能研究
- 2024-2025学年广东省深圳市南山区五年级(下)期末数学试卷
- 低压作业实操科目三安全隐患图片题库
- 布达拉宫课件
- 人教版高中生物必修2《遗传与进化》必背知识考点提纲
- 资产抵押项目资产评估操作流程详解
- 2025-2026学年冀教版(2024)小学数学一年级上册(全册)教学设计(附目录P339)
- 2024译林版八年级英语上册期末复习:Unit1~Unit8全册各单元语法知识点 讲义(含练习题及答案)
- 房屋安全性鉴定方案
- 工作责任感的衡量与评价标准
- 麻精药品考试题及答案
- 感觉运动整合理论-洞察及研究
评论
0/150
提交评论