




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何知识点整理一 直线和平面的三种位置关系:1. 线面平行 符号表示: 2. 线面相交 符号表示: 3. 线在面内符号表示: 二 平行关系:1. 线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。方法三:用线面垂直实现。 若,则。方法四:用向量方法: 若向量和向量共线且l、m不重合,则。2. 线面平行:方法一:用线线平行实现。方法二:用面面平行实现。方法三:用平面法向量实现。若为平面的一个法向量,且,则。3. 面面平行:方法一:用线线平行实现。方法二:用线面平行实现。三垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。方法二:用面面垂直实现。2. 面面垂直: 方法一:用线面垂直实现。方法二:计算所成二面角为直角。3. 线线垂直: 方法一:用线面垂直实现。方法二:三垂线定理及其逆定理。方法三:用向量方法: 若向量和向量的数量积为0,则。三 夹角问题。(一) 异面直线所成的角:(1) 范围:(2)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(常用到余弦定理)余弦定理:(计算结果可能是其补角)方法二:向量法。转化为向量的夹角(计算结果可能是其补角):(二) 线面角(1)定义:直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA在面内的射影,(图中)为直线l与面所成的角。(2)范围: 当时,或当时,(3)求法:方法一:定义法。步骤1:作出线面角,并证明。步骤2:解三角形,求出线面角。(三) 二面角及其平面角(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角为二面角l的平面角。(2)范围: (3)求法:方法一:定义法。步骤1:作出二面角的平面角(三垂线定理),并证明。步骤2:解三角形,求出二面角的平面角。方法二:截面法。步骤1:如图,若平面POA同时垂直于平面,则交线(射线)AP和AO的夹角就是二面角。步骤2:解三角形,求出二面角。方法三:坐标法(计算结果可能与二面角互补)。步骤一:计算步骤二:判断与的关系,可能相等或者互补。四 距离问题。1点面距。方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)2线面距、面面距均可转化为点面距。3异面直线之间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直线m和n之间的距离可转化为直线m与平面之间的距离。方法二:直接计算公垂线段的长度。方法三:公式法。如图,AD是异面直线m和n的公垂线段,则异面直线m和n之间的距离为: 6 / 6高考题典例(距离问题与夹角)ABCD考点1 点到平面的距离例1如图,正三棱柱的所有棱长都为,为中点()求证:平面;()求点到平面的距离考点2 异面直线的距离 例2 已知三棱锥,底面是边长为的正三角形,棱的长为2,且垂直于底面.分别为的中点,求CD与SE间的距离.考点3 直线到平面的距离例3 如图,在棱长为2的正方体中,G是的中点,求BD到平面的距离.BACDOGH.考点4 异面直线所成的角例4如图,在中,斜边可以通过以直线为轴旋转得到,且二面角的直二面角是的中点(I)求证:平面平面;(II)求异面直线与所成角的正切值考点5 直线和平面所成的角例5. 四棱锥中,底面为平行四边形,侧面底面已知,()证明;()求直线与平面所成角的正弦值例题6、如图,四棱锥中,底面ABCD为平行四边形,底面ABCD(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高CBADC1A1例题7、如图,三棱柱ABCA1B1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考点攻克人教版八年级物理《运动和力》达标测试练习题(详解)
- 乡镇突发事件方案
- 2025新版体育赛事承办合同5篇
- 2025年下半年国家林业和草原局国际竹藤中心招聘出站博士后2人易考易错模拟试题(共500题)试卷后附参考答案
- (小升初)2025年山西省晋城市城部分校区初一新生入学分班考试数学检测试卷(含解析)
- 2025年中国乙酰-苯丙氨酸乙酯行业市场分析及投资价值评估前景预测报告
- 2025年下半年四川雁江区考试招聘部分事业单位人员拟聘易考易错模拟试题(共500题)试卷后附参考答案
- 编导类职业规划指南
- 2025年下半年四川眉山青神县考试招聘事业单位工作人员第二批拟聘用人员重点基础提升(共500题)附带答案详解
- 2025年下半年四川省攀枝花市东区经济和信息化局招聘1人重点基础提升(共500题)附带答案详解
- 信息论与编码(第4版)完整全套课件
- 汽修厂安全风险分级管控清单
- GB/T 2679.7-2005纸板戳穿强度的测定
- GB/T 25840-2010规定电气设备部件(特别是接线端子)允许温升的导则
- GB/T 25146-2010工业设备化学清洗质量验收规范
- 参考资深同传
- 多功能注氧仪说明书课件
- 科隆电磁流量计培训课件
- 全集举一反三课件奥数五年级(数学)
- 中国民间故事整本书导读课教学设计
- 商业银行贷款风险分类实务
评论
0/150
提交评论