



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公式法解一元二次方程教案教学目标 1、知识技能掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程 2、数学思考通过求根公式的推导,培养学生数学推理的严密性及严谨性3、解决问题 培养学生准确快速的计算能力4、情感态度通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想 重难点、关键重点:求根公式的推导及 用公式法解一元二次方程难点:对求根公式推导过程中依据的理论的深刻理解关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程 教学过程一、复习引入【问题】(学生总结,老师点评)1.用配方法解下列方程 (1)6x27x+1=0 (2)4x23x=522总结用配方法解一元二次方程的步骤。(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解【活动方略】教师演示课件,给出题目学生根据所学知识解答问题【设计意图】复习配方法解一元二次方程,为继续学习公式法引入作好铺垫一、 探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题【问题】已知ax2+bx+c=0(a0)且b24ac0,试推导它的两个根为x1=,x2=分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去 解:移项,得:ax2+bx=c 二次项系数化为1,得x2+x= 配方,得:x2+x+()2=+()2 即(x+)2= b24ac0且4a20 0 直接开平方,得:x+= 即x= x1=,x2=【说明】这里 ()是一元二次方程的求根公式【活动方略】鼓励学生独立完成问题的探究,完成探索后,教师让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式【设计意图】创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。【思考】利用公式法解下列方程,从中你能发现什么?(1) (2) (3)【活动方略】在教师的引导下,学生回答,教师板书引导学生总结步骤:确定的值、算出的值、代入求根公式求解在学生归纳的基础上,老师完善以下几点:(1)一元二次方程的根是由一元二次方程的系数确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在的前提下,把的值代入 ()中,可求得方程的两个根;(3)我们把公式()称为一元二次方程的求根公式,用此公式解一元二次方程的方法叫公式法;(4)由求根公式可以知道一元二次方程最多有两个实数根【设计意图】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式二、 反馈练习教材P42 练习第1、2题补充习题:用公式法解下列方程 (1)x25x6=0 (2)7x2+2x1=0 (3)3x25x+2=0 (4)5x2+2x6=0 (5)4x27x+2=0 (6)2x2x=0【活动方略】学生独立思考、独立解题 教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】检查学生对知识的掌握情况.三、 应用拓展 例:某数学兴趣小组对关于x的方程(m+1)+(m2)x1=0提出了下列问题 (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程为一元二次方程m是否存在?若存在,请求出 你能解决这个问题吗? 分析:能(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)0 (2)要使它为一元一次方程,必须满足:或或 解:(1)存在根据题意,得:m2+1=2 m2=1 m=1 当m=1时,m+1=1+1=20 当m=1时,m+1=1+1=0(不合题意,舍去) 当m=1时,方程为2x21x=0 a=2,b=1,c=1 b24ac=(1)242(1)=1+8=9 x= x1=1,x2= 因此,该方程是一元二次方程时,m=1,两根x1=1,x2= (2)存在根据题意,得:m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m2)=2m1=10 所以m=0满足题意 当m2+1=0,m不存在 当m+1=0,即m=1时,m2=30 所以m=1也满足题意 当m=0时,一元一次方程是x2x1=0, 解得:x=1 当m=1时,一元一次方程是3x1=0 解得x= 因此,当m=0或1时,该方程是一元一次方程,并且当m=0时,其根为x=1;当m=1时,其一元一次方程的根为x=【活动方略】教师活动:操作投影,将例题显示,组织学生讨论学生活动:合作交流,讨论解答。【设计意图】使学生应用方程有关的有关舦知识解题,进一步掌握公式法。四、 小结作业1问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设银行2025黔南布依族苗族自治州秋招群面案例总结模板
- 工商银行2025双鸭山市秋招英文面试题库及高分回答
- 2025年3D打印技术的产业革命
- 2025年3D打印的快速原型制作技术
- 工商银行2025泉州市秋招笔试EPI能力测试题专练及答案
- 交通银行2025衡水市结构化面试15问及话术
- 邮储银行2025玉林市半结构化面试15问及话术
- 建设银行2025临汾市秋招笔试创新题型专练及答案
- 农业银行2025信阳市金融科技岗笔试题及答案
- 文化创意设计产业园入园合同5篇
- 体验单元 《分类与打包》课件 2025-2026学年大象版科学二年级上册
- 公司成立后追认合同范本
- QC/T 262-2025汽车渗碳齿轮金相检验
- 2025年交通安全问答试题及答案
- 电子厂安全考试题库及答案大全
- 导管相关性血流感染预防策略
- 2025年七年级语文上册常考必背重点知识梳理总结
- 《管理学基础与实务》 课件 曾宪达 第1-5章 管理与管理者- 目标与计划
- 茶艺知识讲座课件
- 股份赠予员工协议书模板
- 合成氨设备管理培训课件
评论
0/150
提交评论