



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.3.1实际问题与二次函数(第1课时)芜湖白茆中心校 谢同林教学目标: 知识与技能能够表示实际问题中变量之间的二次函数关系,会运用二次函数的顶点坐标求出实际问题的最大值(或最小值) 过程与方法能将实际问题转化为二次函数问题,进而建立数学模型解决,从中体会数学建模的思想和数学来源于生活又服务于生活. 数学与思考利用二次函数的图像性质解决实际问题,体会数形结合的思想. 情感、态度与价值观通过实际问题与二次函数的联系,体验二次函数知识的实际应用价值,感受数学与人类生活的密切联系.教学重、难点 重点: 探究利用二次函数的最大值(或最小值)解决实际问题的方法 难点: 理解与应用函数图像顶点、端点与最值的关系.教学过程: 一、新课导入: 1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 .2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 . 3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 . 二、知识讲解:问题:用总长为 60 m 的篱笆围成矩形场地,矩形面积 S随矩形一边长 l 的变化而变化当 l 是多少米时,场地的面积 S 最大?分析:先写出S与l的函数关系式,再求出使S最大的l的值. 矩形场地的周长是60m,一边长为l,则另一边长为 m,场地的面积: S=l(30-l) 即S=-l2+30l(0l30)可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值. 即l是15m时,场地的面积S最大.(S=225) 用总长为 60 m 的篱笆围成矩形场地,矩形面积 S随矩形一边长 l 的变化而变化当 l 是多少米时,场地的面积 S 最大? 三、结论: 1由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当时,二次函数 y = ax 2 + bx + c 有最小(大) 值 2列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围. 3在自变量的取值范围内,求出二次函数的最大值或最小值. 四、运用新知,拓展训练 例题讲解:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?请同学们带着以下几个问题读题(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析: 调整价格包括涨价和降价两种情况先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式.涨价x元,则每星期少卖 件,实际卖出 件,每件利润为 元,因此,所得利润为 元. y=(60+x-40)(300-10x)即y=-10(x-5)2+6250当x=5时,y最大值=6250也可以这样求最值。所以,当定价为65元时,利润最大,最大利润为6250元可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.由公式可以求出顶点的横坐标,如下图在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案.解析:设降价x元时利润最大,则每星期可多卖20x件,实际卖出(300+20x)件,每件利润为(60-40-x)元,因此,得利润y=(300+20x)(60-40-x) =-20(x-5x+6.25)+6125 =-20(x-2.5)+6125x=2.5时,y最大值=6125你能回答了吧!由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?五、随堂练习:1(包头中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm22.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个. (1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_元,这种篮球每月的销售量是 个(用x的代数式表示) (2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大月利润,此时篮球的售价应定为多少元?8000元不是每月最大利润,最大月利润为9000元,此时篮球的售价为70元.3.(2010荆门中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本)解析:(1)降低x元后,所销售的件数是(500+100x),y=100x2+600x+5500 (0x11 )(2)y=100x2+600x+5500 (0x11 )配方得y=100(x3)2+6400 当x=3时,y的最大值是6400元.即降价为3元时,利润最大.所以销售单价为10.5元时,最大利润为6400元.答:销售单价为10.5元时,最大利润为6400元. 六、课堂小结 1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国家用按摩器行业市场全景分析及前景机遇研判报告
- 设立统计台账管理制度
- 设计质量怎样管理制度
- 诊所内科规章管理制度
- 诊所燃气安全管理制度
- 试剂公司试剂管理制度
- 财务红线预警管理制度
- 财政专户账户管理制度
- 货物分拣现场管理制度
- 货物配送运费管理制度
- 2025年安徽省中考数学试卷真题(含标准答案)
- 2025至2030年中国高纯氧化镁行业市场运行格局及前景战略分析报告
- 高级记者考试试题及答案
- 2025国家开放大学《高级财务会计》期末机考题库
- 2025至2030年中国电工开关行业市场发展潜力及前景战略分析报告
- 贵州毕节中考试题及答案
- 北京市朝阳区2023-2024学年三年级下学期语文期末考试卷
- 2025年烟花爆竹经营单位主要负责人模拟考试题及答案
- 租房合同到期交接协议书
- 道路人行天桥加装电梯导则(试行)
- 中国废旧轮胎橡胶粉项目投资计划书
评论
0/150
提交评论